SOFTWARE MANUAL
GENERAL DESCRIPTION & MACROS

2a
SERIES

Applicable to :
HITACHI-S10/2 «
HITACHI-S10/2« E
HITACHI-S10/2« H
HITACHI-S10/2 « Hf

HITACHI

NOTE

All information in this manual is based on the latest product information available at the
time of printing. Hitachi has reviewed the accuracy of this manual, but assumes no
responsibility for any omissions or errors which may appear. The design of the product is
under constant review and, while every effort is made to keep this manual up to date, the
right is reserved to change specifications and equipment at any time without prior notice.

PROHIBITION

These products should not be used for medical, power supply, nuclear, water supply,
drainage plants, traffic control, military, space, nor disaster prevention equipment.

Diversion and/or resale of these products without this manual is prohibited.
Reproduction of the contents of this manual in whole or in part, without written permission
of Hitachi, is prohibited.

TRADEMARKS

HITACHI—810./24«, S10/4« and PSE « are registered trademarks of Hitachi, Ltd.

FIRST EDITION, December, 1990, SP - 63 - 220 (out of print)
SECOND EDITION, December, 1995, SAE - 3 - 201 (A)
All Rights Reserved, Copyright © 1990, 1995, Hitachi, Ltd.

BI-KB-TN<HE-HE> (CP)

LIMITED WARRANTY

Hitachi, Ltd., warrants its products to be manufactured in accordance with published
specifications and free from defects in materials and,/or workmanship.

Hitachi, Ltd., warrants its products against defects in parts and workmanship for one full
year from date of purchase.

HITACHI, LTD., MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED EXCEPT AS
PROVIDED HEREIN, INCLUDING WITHOUT LIMITATION THEREOF, WARRANTIES AS
TO MARKETABILITY FOR A PARTICULAR PURPOSE OF USE, OR AGAINST
INFRINGEMENT OF ANY PATENT. IN NO EVENT SHALL HITACHI BE LIABLE FOR ANY
DIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY NATURE, OR COSTS,
CHARGES, LOSSES OR EXPENSES RESULTING FROM ANY DEFECTIVE PRODUCT OR
THE USE OF ANY PRODUCT.

SOFTWARE UP-TO DATE POLICY

Hitachi, Ltd., constantly reviews its software so as to incorporate the latest technology.
Hitachi reserves the right to make changes to any software to improve reliability, function,
or design. Hitachi cannot be held responsible for any errors in its software.

SAFETY AWARENESS SUMMARY

The following are general safety precautions which must be observed in the application,
operation, and maintenance of this equipment. Failure to comply with these precautions
or the other caution statements in the manuals violates safety standards of design,
manufacture, and intended use. Hitachi assumes no liability for the user’s failure to
comply with these requirements. This summary, and the caution statements in the
manuals, represent warnings of certain dangers of which we are aware. You, as the end
user of the equipment, must follow these warnings and all other applicable precautions,
including codes and laws, to achieve safe application and operation of this equipment.

Safety Disconnects

As outlined in the manuals, you must provide means to disable the control and power
circuits to guard against unexpected or sudden motion or energization of equipment
during operation and maintenance. NEVER WORK ON WIRING WHICH IS ENERGIZED.

Care in Programming and Precautions Against Equipment Failure

The user must follow procedures as indicated in the manuals and as dictated by sound
engineering judgment. Mistakes in programming may result in sudden or unexpected
motion or energization. To protect against programming errors or equipment failure, you
must provide physical guards and cages to prevent physical contact with equipment, and
back-up safety equipment independent of the programmable controller; the latter includes
overspeed protection, overtemperature protection, and electro-mechanical stop switches.
NEVER DEPEND ON SOFTWARE OR CONTROLS TO PROTECT PERSONNEL WITHOUT
PREPARING APPROPRIATE LOCKOUTS AND EQUIPMENT GUARDS.

Warning Devices

The user should provide audible and visual warning devices to warn persons to get clear
of machines before they start. The user must properly program the programmable
controller to operate these devices before the machine starts.

Environmental Requirements

This equipment is not suitable for use in an explosive atmosphere. If inputs or outputs
are wired to devices in an explosive atmosphere, you must insert appropriate approved
electrical barriers in the wiring conduit, install the equipment in explosion—proof cabinets
and wire the installation according to the appropriate electrical code (ex. National Electric
Code.) The other environmental requirements in the manuals must also be met, otherwise
equipment failure could cause personal injury or property damage.

Do Not Service or Adjust Internal Parts

Personal injury may result from unauthorized servicing or adjusting parts inside the
cabinets.

Prevent Spillage of Liquid onto the Equipment

Personal injury could result if any liquid is spilled or poured onto this equipment. The
equipment is general purpose (NEMA Type 1 ventilated) and not waterproof.

Prevent Entry of Foreign Matter into the Equipment

Permitting metal chips and/or other foreign matter to enter the equipment could cause a
short—circuit that could result in personal injury or property damage.

Keep the Plant Free of Vermin

Rodents, like raté and mice, may chew on cables and equipment. This could cause
personal injury or property damage.

Do not Install the Equipment Near Strong Magnetic Fields

Operating the equipment near a strong magnetic field could cause malfunctions that could
result in personal injury or property damage.

Protect From Shock and Vibration

Subjecting the equipment to shock or vibration could cause malfunctions that could result
in personal injury or property damage.

Dangerous Voltages

Dangerous voltages are present whether the equipment is running or not. These voltages
could be inside the programmable controller enclosure or in external control devices.

Danger of Manually Operating Limit Switches or Pushbuttons

Never operate a limit switch by hand. The resulting motion could cause personal injury.
If you plan to operate a limit switch, be certain that you are clear of any other moving
parts, then use a long wooden pole. Do not operate a pushbutton during checkout or at
any other time uniess you are sure what action the pushbutton causes, and are sure
nobody is near any part that might move or be energized unexpectedly.

“RUN/STOP” SWITCH CAUTION

The “RUN./STOP” switch only stops execution of the
ladder logic program or Hi—Flow program. Digital and
analog outputs are left in the active state when
execution stops, unless the optional rungs described
in the CPU manual have been added. The “RUN.
STOP” switch does not affect the operation of C—
language or FA-BASIC language programs. Outputs
can still be produced in response to C-language or
FA-BASIC programs, or by the action of programmers
typing in commands in these languages, while the
“RUN/STOP” switch is in the “STOP” position.

DO NOT DEPEND ON THE STOP SWITCH TO STOP
MOVING PARTS OR TO PREVENT UNEXPECTED
MOTION OR ENERGIZATION. USE HARDWIRED
SAFETY STOPPING DEVICES, AS EXPLAINED IN
THE CPU MANUAL. ALWAYS DISCONNECT AND
LOCK OUT POWER AND CONTROL VOLTAGES
BEFORE WORKING ON ELECTRICAL CIRCUITS OR
PARTS THAT CAN MOVE.

vi

General Specifications

Supply voltage

100-120 VAC, single-phase
50/60 Hz*4 Hz

Supply voltage

range

85-132 VAC

Permissible duration of

momentary power failure

10 ms or less (at rated input)

Temperature Operational 32 to 131 °F (0 to 55 C)
Storage —4 to 158 °F (-20 to 70 C)
Humidity Operational 30—90% RH
Storage 10—90% RH
Vibration resistance (Max) 0.6 G (1000 rpm)
Impact resistance (Max) 10 G

Electrical noise tolerance

Noise Voltage 1,200 Vpp
Noise duration 1 usec

Noise frequency 50 Hz

Voltage resistance

1,500 VAC, 1 min. between each external

AC terminal and case

Insulation resistance

5 MQ or more as measured with
500 VDC insulation resistance meter
between each external AC terminal

and case

Resistance to ground

Less than 100 ohms

Dust/gases

0.1 mg/m?® or less; no corrosive gas

permitted

Cooling method

Natural cooling

vii

Programming Terminal
PSE « Specifications

Supply voltage

100—120 VAC *12 % single-phase 50/60 Hz4 Hz

Power re- Continuous 130 VA
quirement Surge 6,000 VA
Temperature Operational Storage
50 to 95 °F 23 to 122 °F
(10 to 35 C) (—5 to +50 C)
Humidity 40—80% RH 10—98% RH

Vibration (Max)

0.5 G, 17 Hz vibration applied for 30 s

Dust 0.1 mg/m® or less

Dimensions | EL cover closed 400 WX110 HX350 D (mm)
EL cover open 400 WX230 HX350 D (mm)

Weight Approx. 4.5 kg (10 Ib)

viii

PREFACE

Thank you for purchasing this HITACHI programmable controller

(PC) .

This manual describes the Compact PMS (CPMS) operating system

that enhances the real-time and multitasking capabilities of the
HITACHI S10/2a seguencer series.

CPMS gives the 2a series of controllers power comparable to

that of full-scale control computer in many applications.

<Manual organization>

1. General Description
This chapter describes the overall configuration of Compact
PMS (CPMS).
2. Task Management
This chapter describes task scheduling, task operations, and
other functions required to construct a realtime system.
3. System Management
This chapter describes built-in subroutines used for system
starting up, error handling, and user-specific processing.
4. Macro Instruction Specifications
This chapter describes the specifications of macro
instructions as well as how to link them.
Appendixes

These appendixes provide debugging and macroprogramming
facilities listings and supplementary information.

This manual is applicable to the following system floppy disks:

Target tool| System floppy disk name Version

Version 5.0, Revision

PSE a Compact PMS SYS 0.0 or later

Version 4.2, Revision

CPMS Load System 0.0 or later

PS/2 Version 2.2, Revision

CPMSE Load System 0.0 or later

The following table shows the relationships between CPMS
versions and supported macro instructions.

CPMS versions
v4

Macro instruction

rleas
queue
abort
delay
timer
ctime
chap
chmod
sfact
gfact
uspchk
stime
gtime
wake
cwake
rserv
free
mvmem

*1

SN AN A A N E A R A

N AN A BN RS AR AN A R AN RN AN AN RN RN R R

ANRENANENANINANANANENANANENANANEANANEN

+~ : Supported
*1 Additional features are availlable.

CONTENTS

1. GENERAL DESCRIPTION «.evveennnneeeennneennnn.
1.1 CPMS tiicteteeceossccasscscasonsscssssssassssnassssacsnsss
1.2 HAYAWATE@ .ccceececcsccccccccocosasscossssssonssssanassas
1.3 Softwarec.cecveeseccss Cecetccscessesacessesannns
1.3.1 PrOGrams .eccceeeesssesacsosssscssescssssscssscsnsssssees
1.3.2 Loading PrOGXaAMS «.cccceecosccosccscsccsosccsassccsseses
1.3.3 ChecKking PrOGramMs . ..ceceeeercessacnsoscccccscccansees
1.4 Relationship between 220 0S and CPMS ...cccecnceacccnns

B W WD NDNDDNDBR

2. TASK MANAGEMENT....
2.1 Task Configuration ...cceceeccceececsccssccsconssosscncss
2.1.1 OpPErationNs ...cceeceosccscscsscsosscscnososcsnsssssasss
2.1.2 Linkage between CPMS and tasksccovevvcccccncs 10
2.1.3 Task levels ..iiiiieeetertecreccscccsscsccnscnssonns 11
2.1.4 Subroutines}......... 12
2.1.5 Data tablescccecetecrenteccsesccccacccncnsscnns 13
2.2 Task Statesccireetercscccsssccssscsssssssnsssasnas 14
2.3 Task OperatioOnsS ..ccccecececsccscsccacscscscssscsascssoccssss 16

3. SYSTEM MANAGEMENT ..ccoecececoccsacscsssssoscssessssscsosss 19
3.1 Initiating the SyStemccceececccccccccccccns ceccens 20
3.2 EBrror Handling ..ccceecececccaccasssssscsacsossoccsasnss 20
3.3 Installing Subroutinesccecceeeeececcccscccaaccans 22
3.3.1 TYDES teteercscccsccssosccassscssssnsccscans cecsccsens 22
3.3.2 Registrationcceeeeeeceeseesccccsscsccccsnsonsas 23
3.3.3 Input informationcceeecessecccccccccnccacancs 23
3.4 ETYOX LOJ cecocevsccsnessssssscssssasnsssasssssaasasnes 24
3.5 DHP tveceecnsconns cecescsssseecssssseeessssssescssaco e 32
3.6 Floating-Point Operation ...cceceeevceccccscscccsccnscas 33
3.6.1 Notes on use of floating-point operations 34
3.6.2 Error log for floating-point operation .:...ccacec.. . 36

4. MACRO INSTRUCTION ¢..ccceoceccscsccccccns ctecssasanes ceee 37

4.1 Macro INnstructioneiceiecececcccccnncccccncnnosse 38
4.1.1 Macro librarycceeeeececscccsccscnscncsnosconcsss 38

Xi

4.1.2 General rUlesS ..c.ceceeccececcacsoscsscsscosonocscocsnsosse

4.1.3 Checking parameterscccececeecccccsccsccscascccnecs

4.2 TYDESB cvcvevesessssnsocssosncncs

* e e 0

® e 2 000 00090090

4.2.]1 Tle@B ..cccceoccecccccccscccsnccscsscncsasnces ceceaes

4.2.2 queue ® & © 06006 ¢ 9 0 0P C 00 LS PP G LSS SR EOOIOECEOSIBSTOOE

4.2-3 a-bort ® 6 © ¢ 86 0 0 00 00 0SS T O SO SCE GO S E SO CO N0 L 0O N ESOOENIIESTECEES

402.4 delay LA B B A A B A A A I A I A SRR AR B BRI BN BN B B A B NN I B Y B B A I B BRI B B I B I

4.2.5 CiMEY v.vveeeereecnconnococaossoocsscasosnsososansaccccsces

4-2.6 Ctimeo.-.oo.o-.....-...............................'

4.2.7 Cha-p ® 8 © @ 9 ¢ S 0 S S S C L LSO 0SS LS E O G E L O LSO e s e s 00 e s e
4.2'8 ChnlOd................-........‘.......

402.9 Sfact ® © 0 008 00 0 00 05 ° 00800 CE LSO EE LGS e G0N NS 0000 e e

4.2.10 gfact

4:2011 USPChk ® 8 5 2 5 @ 6 O E P OB S S E L0 SO L e L OLSE 0L 000G

4.2‘12 Stinle ® 8 © 06606060 00 0 ¢ 0000000000060 8000006056000 0008 000008008

492.13 gtim ® & 0 0 0 6 00 5 05 0SS SO EC OO LS L LSS LSS LSO ECe e s e

402014 Wa.ke CRC BB B B A B AN B Y B R A BRI A B R B BN B AN B B BT B B SR Y IR R B A B B Y A B I I)

4.2.15 cwake .t cetttercntcccncs

4.2.16 YOSCYV e e ecvecccsssssnsssssossssossscsssesossesscssssccsssese

402017 free ® @ 5 0 0 8 9 0 0 C P G TS S GOSN LGOS G S OO N LSS S SO NS SS eSS

4.2.18 mv:m.em........................-......'..............

4.3 Supplemnt ® 6 06 0 0 0 00 00 0 0 5000 0060000008000 000000

4.3.1 Relationship between rserv and freecccceeeeee.

4.3.2 Relationship between wake and cwake

4.3.3 Relationship between stime and gtimeccceeeeeee

4.4 How to Use Macro INStrucCtionscccececscecscscncscse

5. APPENDIX ..ccccceecocccscscsscsoscsossssassoscsscssssasccsocsse
APPENDIX 1 EXTENDED MEMORY ALLOCATION IN THE
H-S10/2a SERIES ..veceeececsoccnssnsacsncsnnnns
APPENDIX 2 PROTECT KEYSWITCH ..ccccccvcsacccocsccccccnnnsnse
APPENDIX 3 DHP INFORMATION ..cvcececcccsccoscscnocccnsonnascs
APPENDIX 4 MACRO INSTRUCTIONS AND THEIR EXECUTION
TIMES cvocceccesccsccnoscncnocacsns

Xi

40
43
44
45
46
48
49
50
51
52
53
55
56
57
58
61
63
66
67
70
72
74
74
75
76
77

87

88

89

20

91

1 GENERAL DESCRIPTION

1 GENERAL DESCRIPTION

1.1 CPMS

CPMS is a realtime OS.

CPMS has various improved functions for control systems that
handles, in realtime, signals changing as the time elapses.

1.2 HardWare

Expansion memory is required in order to use CPMS. User-created
programs and the debugger that debugs programs are stored in

expansion memory. Select a memory size according to the size of
programs.

If the HI FLOW system is planned to be used in the future,

do not
use the first 256K bytes for the user-created programs.
B Configuration
Expansion mount base : HPC-1000

CPU power supply module: LWVOO0O
CPU module : LWPO00(2 a)

Expansion memory : LWM

In the figure, CPU-to-CPU and PSE
linkage option modules are mounted.
(They are not required.)

1.3 Software
1.3.1 Programs

The three program languages listed below can be used to create
programs that can be executed under CPMS. Select one according to
the system processing time and how easy programs can be created.

Processing speed Level of program

of language creation
More
B 68000 assembler language raster g\ difficult-
B C language - '
. FA—BASIC 1anguage Slower- Easierv

1 GENERAL DESCRIPTION
L

1.3.2 Loading programs

Programs are loaded by PSEx or a host computer such as V30 series
using H-7338 host computer linkage.

¥ By PSE V¥ By host computer
2o, 2qaE Host computer

I Down loading

personal computer

1.3.3 Checking programs

Programs created by the user can be checked by the PSE debugger.

20, 20E
PSE0 debugger

personal computer debugger

1 GENERAL DESCRIPTION

1.4 Relationship between 2« OS and CPMS

CPMS is the realtime OS that operates under 2a series (2a, 2¢E,
2aH, 2aHf) 0S. The CPMS manages the operations of tasks created by
the user.

'ﬂ Initial start processing '
System -
Management —| Error handling '
-4 Idle processing '
—18 mode management ' S mode: Sequence mode
—{ Task start management .

| | Operation function
Sequence management
Management

Sequence processing
1 (T.U. ...)

2aseries —{R I/0 management '
0S
-4 PSE linkage processing '
Line

Management -
. Host computer linkage
processing

—{CPU—to—CPU linkage '
-l External 1/0 I——l CPU-to-CPU PSE linkage '
Management

-{ External device linkage .

Task management

Task control management
macros

CPMS

—{Timer management '—4Timer management macros .
_{Factor management '_4Factor management macros '

State control Task Start control
macros

—{Resource management '_JResource management macros '

@Task: Minimum program unit used in the flow of control performed
under CPMS. :

1 GENERAL DESCRIPTION

Bl Initial start processing
When the power supply is turned on, initial start processing
initializes the system tables and hardware registers.
M Error handling
If a CPU error occurs, error handling collects the information
of the error and enables other operations.
B Idle processing
If a CPU error or hardware error occurs, idle processing
converts the information of the error to a code and indicates it
on the CPU console LED. Idle processing also counts time.
B S mode management
S mode management manages starting and restarting of S mode
programs.
W Task start management
Task start management schedules tasks started by the P coil
(Started by a S mode program).
Bl Operation function management
Operation function management executes operation functions
started by operation instructions.
B Sequence processing
Sequence processing controls the timer (T) and one shot (U)
required for sequence control.
B RI/O management
RI/O management receives the RI/O transfer termination,
collects RI/O state data, and performs start operation.
B PSE linkage processing
PSE linkage processing controls the PSE linkage by using the
H-7338 protocol.

B Host computer linkage processing

Host computer linkage processing controls the host computer
linkage by using the H-7338 protocol.

B CPU-to-CPU linkage

CPU-to-CPU linkage transfers the contents of global area (PI/O
G area) from the specified address to another CPU (2a, 2a¢E, 2aH,
2aHf) as much as the specified number of words.

1 GENERAL DESCRIPTION
[R

B CPU-to-CPU PSE linkage

CPU-to-CPU PSE linkage links one PSE to two or more CPUs (2a,
2aE, 2aH, 2aHL).

B External device linkage

External device linkage provides the RS-422 interface for linking
external devices (personal computers, CRT, T/W, etc.). A protocol
must be selected according to the external device.

B Task management

Task management manages task start, task restart, and idle and
dormant state of tasks. It also schedules tasks when tasks are
started or restarted.

B Timer management
Timer management sets, cancels, and delays cyclic start.

B Factor management

Factor management sets task start factor and resets it after a
task is fetched.

M State control

State control modifies the execution level (hardware level) and
task level.

B Resource management

Resource management exclusively controls user-defined resources
shared by tasks.

2 TASK MANAGEMENT

2 TASK MANAGEMENT

2.1 Task Configuration

A user created program is constructed as

shown below:

. Internal
: timer

Initial
task

Task

Bl Task number

"ﬂ
L o
‘A #
Global
table

Task

A task has a task number (TN) for identification.

P coil and task classification
P coil | Task . o . ;
number | n or Classification Start method Explanation
POO1 1 Initial task Started when CPU When the CPU power supply is
power supply is turned on, the initial task
turned on or CPU is|is started. A task that
reset. initializes the system is
allocated as the initial task.
P002 Started when the P |A control task created by
2~
~PO7F 127 | User task coil is excited or |the user is allocated as a
a macro instruction|user task.
(queue) is issued.
PO80 128 System task Started by the A system task (such as debug-
system OS. ger task) is allocated as the
system task. The user must
not use this task.

@ ror 2a, 2¢E (2a¢H, 2aHf) tasks can be started (queued) when the
P coil is excited by a sequence program. The P coil number is

equal to the task number.

2 TASK MANAGEMENT

M Global table
The global table is used to transfer data between tasks.

W Common subroutines

The common subroutines are reentrant subroutines that can be
used by task.

211 Operations

User-created tasks are managed by CPMS for start, interrupt, and
terminate operations. Each task has a priority level. When tasks
are started, tasks are processed beginning from the one that has
the highest priority level. For example, if a request to start a
task that has a priority level higher than the current task is
issued, the current task execution is interrupted and the task with
higher level is executed. The interrupted task is made to wait
until execution of the task with higher priority level ends.

M Operation example

s C P M S
pomesmas N [aabbtend H
e s S i aadd i
/ ® 2 \?
Vi /o le Vi Y5
1 /9 o \®
®
®
@ Task level: C>B>A
@Numbers: Execution order
Task A Task B Task C
M Timing chart
Started Interrupted Restarted Ended
Task A ——— Interrupted S
Startedl Restarted Ended
v
Task B ————1 —
Started Ended
Task C

2 TASK MANAGEMENT

2.1.2 Linkage between CPMS and tasks

CPMS provides various instructions related to task start, end,
and cancel. These instructions are used by user tasks to request
CPMS processing. These instructions are called macro instructions
The user uses these macro instructions to realize multitasking.

@@ Task start operation examples using macro instructions ¢4

@® OUEUE macro instruction

Task A Task B

Task operation level

—> : Task A<Task B
------> ; Task A>Task B

A

If the level of task B is higher than task A, control is passed
to task B when the request to start task B is isued. If the level
of task B is equal to or less than the level of task A, control is
passed after task A execution ends.

If a request to start a task whose level is equal to or higher
than the level of task B has been issued before control is passed
to task B, the task is executed first then control is passed to
task B.

@ TIMER macro instruction

Task A Task B
Y

Task B
timer starty

Timer
specified time /

Vv

A request to start task B is issued after the timer specified
time elapses. If a request to start a task whose level is equal to
or higher than the level of task B has been issued, the task is
executed first then control is passed to task B.

- 10 -

2 TASK MANAGEMENT
o~

2.1.3 Task levels

Each task has a priority level. When an attempt is made to
execute two or more tasks, the tasks are executed according to the
priority levels beginning from the task that has the highest
priority level. If two tasks are in the same priority level, the
one for which a start request is issued first is executed first.
There are five priority levels from 0 to 4. The lower the number
is, the higher the priority. A priority level is allocated when the
debugger registers a task.

Determination of task operation levels differs depending on the
system configuration.

B Determination of task operation levels according to processing

Entire processing

Processing to send
data to host
computer once every
day.

Data segd Interrupt Data receive
%igcesizrg'performed processing processing pgrformed
ry minutes every five minutes

Level . \1/
1 V77 r//////////A
2 /

3 v /
4 v A

Low

Interrupts are regarded as the first priority and the highest
level is given to interrupt processing. Then, levels are determined

for processing that is performed less often.
B Determination of task operation levels according to processing
time
Entire processing

Processing time | Processing time | Processing time

. (high speed) (medium speed) (low speed)
Leve
i v
R /11114
SIS v
Low D

Because tasks with high-speed processing are made to wait for a
long time if higher operation levels are given to tasks that has
low-speed processing, higher levels are given to tasks that have

high-speed processing.

- 11 -

2 TASK MANAGEMENT

2.1.4 Subroutines

Two types of subroutine are provided. ISUB is used by a specific
task and RSUB is used by two or more tasks.

ISUB is directly linked to the main task (or a subroutine) that
calls the ISUB.

RSUB is stored in a fixed address and operation jumps from each
task to this address.

A library is linked as an ISUB.

ISUB: Internal subroutine

Task A Task B
V4 V]
//////1 /l
ISUB ISUB|
A
RSUB: Resident subroutine
Task A Task B

&q
_q

RSUB

A A

B Differences in memory
[For SUBl defined as ISUB]

Memory | Main A % Main B ///U}//flé Empty

The same subroutine (SUB1l) is stored in two areas (@) and and
memory is used wastefully.

- 12 -

2 TASK MANAGEMENT

[For SUBl defined as RSUB]

”
Memory| Main A|Empty| Main B Empty (iggg;
Z

SUBl is made resident so that memory has sufficient empty areas.
2.1.5 Data tables

Data tables are classified into two types, internal task data
tables and global data tables.

[Internal task data table]
An internal task data table is used by only one task.

Task 1 Task 2
W L7

/IT
T N

&£
Data table 1 |1 Data table 2

Task 1 can use only the data table 1. Task 1 cannot read/write
the data table 2. Task 2 can use only the data table 2. Task 2
cannot read/write the data table 1.

[Global table]

A global table is used by two or more tasks. Data is read from or
written to this global table by two or more tasks. Using a global
table, data can be transferred between tasks.

Task 1 Task 2

\Y 4
Global table
(Data table)

Both task 1 and task 2 can read data from or write data to the
global table (data table). Using the global table, data can be
transferred between task 1 and task 2.

- 13 -

2 TASK MANAGEMENT
L e

2.2 Task States

A task may be in execution or interrupt state.

Dormant

Task delete Task registration
operation operation

€—— ! The request is i i ;
by a u(sler ta:;]i.lssued @A task is deleted or registered

by the debugger.

fremeeme The request is
issued by CPMS.

- 14 -

2 TASK MANAGEMENT

Bl Non-existent
The task is not registered to CPMS.

B Dormant
Starting the task is inhibited.

W Idle
A request to start the task can be accepted.

M Runnable
A request to start the task has been accepted and the task is
waiting to be executed.

B Running
The task is being executed.

M Scheduled

A request to start the task can be accepted and the task will
automatically enter runnable state after a fixed time.

B Suspended

Task execution has been interrupted and the task is waiting for
an event to occur,.

€@ Task states and macro instructions @@

A macro instruction is used to change the state of a task. The
state of a task changes as shown below.

Task which issues the marco Task for which the macro
instruction instruction is issued.
Macro name
Before After Before After
RLEAS Running Running Dormant Idle
QUEUE Running Running Idle Runnable
ABORT Running Running Optional Dormant
TIMER Running Running Idle Scheduled
CTIME Running Running Scheduled Idle
DELAY Running Suspended _—
CHAP Running Running Running Runnable
CAUTION

The STOP SWITCH on the CPU module
does not affect the operation of
CPMS task. Outputs can still be
controlled by CPMS task or by the
action of programmers using these
tasks while the switch is in the
"STOP" position.

- 15 -

2 TASK MANAGEMENT
SIS,

2.3 Task Operations

Task execution flows as follows after it is started until it ends:

@®rFactor

A request to start a task

is issued when an event
occurs.

@Execution
condition

The task, for which a start
request has been issued, is
executed when the execution
condition is satisfied.

- —
@Interrupt @End
condition condition
The task being executed is The task being executed
interrupted when the inter- ends when the end condition
rupt condition is satisfied

is satisfied.

@Restart
condition

SN2

The interrupted task is
restarted when the restart
condition is satisfied.

e

2 TASK MANAGEMENT

€@ Factor ¢ ¢

Event

Explanation

A QUEUE macro instruction
is issued.

It is requested to start the task specified by
the QUEUE macro instruction parameter.

€ @ Execution condition ¢ ¢

Condition Explanation

There is no task whose priority level is higher The local task is executed
than the local task, or whose priority level is when it has the highest
equal to the local task priority level but a priority among the tasks in
request to start the task has been issued before the queue block and the
the request to start the local task. Further, local task has been gene-
the local task is in memory and has been rated.
registered to CPMS.
€ @ Interrupt condition ¢¢

Condition Explanation

A resource required for
task execution cannot be
used.

If one of the resources (such as CPU) required

for task execution is being used by another task,
execution of the local task is interrupted and the
task is made to wait.

A task with higher priority
is in executable status.

By an interrupt, the task with higher priority is
started and control is passed to the higher
priority task if it is in executable status.

The local task interrupts
its own execution.

If the local task interrupts itself in order to
have synchronization, control is passed to
another task.

2 TASK MANAGEMENT

€@ End conditions ¢ ¢

Condition Explanation
Task execution ends. The task is removed from the execution wait queue.
An ABORT macro instruction Task execution is terminated if an ABORT instruc-
is issued. tion is issued to the task.
Processing enters status in CPMS automatically aborts the erroneous task.
which it can no longer be
continued.

@@ Restart condition ¢¢

Condition Explanation
A resource required for A resource required for task execution is freed
task execution becomes by another task and becomes available.
usable.
The cause of interrupt is The cause of interrupt (delay) is removed.
removed.
All the tasks with higher The local task is not restarted until all tasks
priority levels are which have higher priority than the local task
interrupted or ended. become inoperable.

3 SYSTEM MANAGEMENT

3 SYSTEM MANAGEMENT

3.1 Initiating the System

When the power supply is turned on, CPMS starts the initial task.
The initial task is a user task to be started first. All user tasks
other than the initial task has dormant status when the power supply
is turned on. Therefore, the initial task has to issue RLEAS macro
instructions for the other user tasks required by the job so that
the tasks can accept the start requests. The task number of initial
task is 1.

3.2 Error Handling

The operating system of 2a series has the improved RAS functions
for the higher system reliability. The operating system checks
hardware-level and software-level error and performs retry operation
for some software. If an error occurs for which the operating system
cannot perform retry operation, the operating system collects the
information of the error, links error handling to user-installed

subroutines, then terminates the task which has issues the request.

- 20 -

3 SYSTEM MANAGEMENT

@@ Error causes and error handling ¢4

(Error cause) (Error handing)
Power

.... The system is
terminated.

Detected by
hardware

Parity error

in memo ««« The task is aborted.

Detected Interrupt The interrupt is
by software erroxr ignored.

Detected by . .]
hardware Exception The task is aborted

software error The task is

3 SYSTEM MANAGEMENT

3.3 Installing Subroutines

If an event (error) occurs in the system,

the operating system

performs error handling. The user can incorporate error handling in
the system and register it as a subroutine. One user-installed
subroutine can be registered for one event.

3.3.1 Types

The following subroutines can be incorporated in user programs.
The linking of these built-in subroutines do not require register
This allows

and save restore operations within the subroutines.

the subroutines to be used in C language programs.

Subroutine Op?ra-] Available Issuable
tion | Applicable Event Information Macro Remarks
Name Abbr. | Level Instr.
System Down | SDS 6 A hardware or Address of None
Subroutine program error Error Freeze
during 0S execu- | Area (ERSTK)
tion
CPU Error CPES 6 A hardware or Address of queue
Subroutine program error Error Freeze | rleas
during a task Area (ERSTK)
execution
Exit EXS 5 End of a task TN of the queue After
Subroutine ended task rleas release
of
resource
Abort ABS 5 Issue of Abort IN of a task | queue Ditto
Subroutine macro instruc- being aborted | rleas
tion
Parameter PCKS 5 A macro param- Address of queue
Check eter error Error Freeze rleas
Subroutine Area (SVCEB)

® CPMSCW is located at address /F1290 for the 2a,

/81490 for the 2e¢E, 2a¢H, and 2« HE.

or at address

e The input data is stored as the 38th long word counting from

CPMSCW.

/F1290 [—}—>CPMSCW+0
/81490

+38

- 22 -

information

Input:- -

3 SYSTEM MANAGEMENT

3.3.2 Registration

A subroutine is installed by the user writing its address at the
corresponding area in the user USLCB (Subroutine Link Control
Block). The start address of USLCB is stored as a long word at
address /F1170 (SEQCB Sequence Control Block). Be careful to
install the subroutine correctly.

DD usies <

215 20

/F1170 [uszce L% ry —
Leading address

— SDS address —

— CPES address —

12
—— EXS address —f
16
— ABS address
20
— (F.U) —
24
28 . 4 bytes/1 case

— PCKS address —

3.3.3 Input information

The error information input from the built-in subroutines include
the following two tables:

N ERSTK: Error Stack
Edited at system down or when a CPU error occurs.

B SVCEB: Supervisory Call Error Block
Edited when a macro parameter error occurs.

- 23 -

3 SYSTEM MANAGEMENT

3.4 Error Log

e® Structure of ERSTK Table for S10/2a ee

This table stores data for two errors if the two errors occur in

succession.

/FOC38

/FOC9C

DD erstx <]

T EC
Error 1 2| cen | spN
100 bytes 4 SPC

61 o

Error 2 | 10| D1
100 bytes"

\ 14 D2

]

\

\ 181 D3 -

1

1 22 _ D4 —

]

\

i 261 D5 -]

\

1

| 30 D6 —]

1

“ 341 D7 -]

t

\

\ 38 . AO ——

i

1
|
3 46 - A2 —
1
1
10 A3 —
\
!
' sal a4
1
1
i 62 L A6 —
1
\66 SR
‘168 - PC —]
]
V2L sse
16 use
1
o
\
\
\ (F-U)
\
\
\

- 24 -

DD ERSTK (When address

Different data is stored if EC in the indicates an
address error.

error occurs:) 4<]
The same as
the left side
215 25 24 23 20
66 (F-U) RW| IN FC
\ //,
\ ’z
\ ’/
\ ’/
66 Phd
68| AC |
72 IR
74 SR
76 pC]
80 SSp ~—
84| USP -~
(F-U)

3 SYSTEM MANAGEMENT

EC: Error Code

215 214 213 212 21 210 29 28 27 26 25 24 - 20
EV

=1: Bus error

=2: Address error

=3: Illegal instruction

=4: Division by zero

=5: Illegal use of
privileged instruction

=15:I1legal exception

L S mode nesting_over
L— (F. U)
L Expansion RAM protect error

L Expansion RAM parity

L——Illegal S mode instruction

L Basic memory protect error

L S mode RAM parity
L 0S RAM parity

L— WDT error

L— (F. U)

L Supervisor stack fence over

CPN : Task (P coil) No.

SPN : S mode program No.

SPC : S mode program counter (Valid only for illegal S mode
instruction or S mode RAM parity)

D0-7: Contents of data register when an error occurs

AO0-6: Contents of address register when an error occurs

SR

PC Program Counter (MPU)

SSP : System Stack Pointer

USP : User Stack Pointer

RW Read operation (=1) and Write operation (=0)

IN Instruction (=0), Others (=1)

Contents of status register when an error occurs

3 SYSTEM MANAGEMENT
LS R e e

Function Code =1 ... user data
=2 ... user program

FC

=5 ... supervisor data

=6 ... Supervisor program
AC : Access Address
IR Instruction Register (Instruction when an error occurs)
FeU : Reserved for future use

- 26 -

3 SYSTEM MANAGEMENT
e

2 a E |

2 a H |

ee Structure of ERSTK Table for S10/2«E ee zsz
This table stores data for two errors if the two errors occur in

succession. The "Expanded Information" in the table differs

depending on the contents of "stack frame format"”.

/80000 0 CASEP 64 128
Error 1 2 TYPE
256 bytes 4 F.U 68
- D1 -
6 EC
/80100 8 CPN 72
\ — D2]
Error 2 " 10 SPN I~
256 bytes|, 12 spC 76 .§
‘I — D3 7]
| 14 MS &
' (o]
' 16 80 o
! — SEC] — D4 - -
1
| 3
' 20 YEAR 84 2
\ — D5 - o
) 22 | MONTH | DAY &
1 3]
[24 88
" = SECCNT — — D6 =]
1
X 28 92
' — SYSCNT — — D7 -
1
]
! 32 SVO 96
‘l — Al =
\ 34 SR
1
1 36 100
' — PC — — al =
]
1
: 40 104
| - MSP — — a2 -
1
]
1 44 108
" — ISP — — A3 -
|
| 48 SFC 112
\ — A4 -
1 50 DFC
|
' 52 116
i — VBR — — A5 -
1
1
1 56 120
'. — CASHCR — — A6 =
]
| 60 124
' — CASHAD —] — usp -
' 254

3 SYSTEM MANAGEMENT
e

22=Branch or setting
when comparison is
not possible (FPU)

23=Incorrect result
(FPU)

24=Division by zero
(FPU)

25=Underflow (FPU)

26=Operand error (FPU)

27=0Overflow (FPU)

28=Non-numeric
signaling (FPU)

The values 22 to
28 apply only to
the 2 aHE.

Note:

EC: Error Code
21 214 213 212 211 Q210 29 28 27 26 25 24 - 20
EV
(=1l: Bus error
=2: Address error
=3: Illegal
instruction
| {=4: Division by
- zero
=5: Illegal use
of privileged
instruction
=15:T1legal
L exception
L— S mode nesting over
(F. U)
L Expansion RAM protect error
L Expansion RAM parity
L— Illegal S mode instruction
L Basic memory protect error
L—— S mode RAM parity
L— OS RAM parity
—— WDT error
L (F. U)
L— Supervisor stack fence over
CASEP : Case point
TYPE : RAM - OS time=/6820, ROM - OS time=/6821
EC : Error code
CPN : Task (P coil) No.
SPN : S mode program No.
SPC : S mode program counter
(Effective only for illegal S mode instruction or S
mode RAM parity)
- - \
MS : Millisecond
SEC : Second
. Are set only when the memory with
YEAR : Year ‘clock feature is mounted.
MONTH : Month
DAY : Day
P4
SECCNT: Seconds counter

- 28 -

3 SYSTEM MANAGEMENT
s e

2aFE
SYSCNT: System counter %
SvVo ¢+ Stack frame format + Vector offset
SR : Contents of status register
PC : Program counter (MPU)
MSP : Master stack pointer
ISP ¢ Interrupt stack pointer
SFC : Source function code
DFC : Destination function code

VBR : Vector base register

CASHCR: Cache control register
CASHAR: Cache address register
D0-D7 : Contents of data register
AO-A6 : Contents of address register
UsSp : User stack pointer

SVO: Stack Frame Format + Vector Offset

| A J

Stack frame format Vector offset

Stack frame format and expanded information
There is no expanded information when the stack frame
format is other than 2, 9, A, or B.

- 29 -

3 SYSTEM MANAGEMENT

2 aH
2 9 o A B
128 ‘ IR IR 128
— INS A — — INS A —
- - SSW SSW 130
132 IR IPS_C IPS_C 132
iR IPS_B IPS_B 134
136 IR 136
— DCFA — DCFA]
IR
140 IR IR 140
IR IR 142
144 : 144
— DOB] — DOB
148 IR IR 148
IR IR 150
152 IR 152
IR 154
156
. — SB A —
INS_A: Instruction address —
IR : Internal register IR 160
SSW : Special status word IR 162
IPS_C: Instruction pipe stage_C 164
IPS_B: Instruction pipe stage_B — DIB —
DCFA : Data cycle fault address 168
DOB : Data output buffer
SB_A : Stage_B address IR
DIB : Data input buffer - =~
22 words
210

- 30 -

3 SYSTEM MANAGEMENT
SES e

e® Structure of SVCEB Table ee®

/F1278 swce | [0 (F-U)
[~ Leading
address 2 EC
[2aE}[2aH]| |2 aHf] /81478 4 EPN
6 SVC
8
— Usp]
12
L 20 —
16 SR
18
22
(FU)
30
EC : Error Code
215 514 513 512 20

Parameter address is odd number.
Parameter error

SVC code error

EPN: Program No. which contains an error
SvC: SVC macro No.

USP: USP when an error occurred

A0 A0 register when an error occurred
SR : SR when a macro instruction is issued
PC : Return address of macro instruction

LX)

FeU: Reserved for future use

- 31 -

3 SYSTEM MANAGEMENT

3.5 DHP

The debugging helper (DHP) tool traces status changes of the
operating system. Should the operating system cause a problem, DHP
is used to check system conditions before the problem occurred.

DHP tables are shown below.

CPMSCW

23 20 215 20 .
v + DHPRM (DHP recording
[2al/F1290 i;rggMgggress —>0| DHPRM mode)
2 DHPIN 2: All recording mode
|2aE2 aH||2 e HY /81490 - 1: CPMS macro
r—\\\~_// recording mode
Other: No DHP entry is
reporded.
DHPRB + DHPIN (DHP initial mode)
' 231 2° 215 20 1: On resetting (GR
of DHPRB 2 DHPSV are cleared
> E|F 2 a|P 70t /81480 - (zero) . .
[22E]j2aH]P « B ﬁfecordlngﬁﬁ Other: On resetting
(Dé;{r;;aB) (GR), DHPRB and
231 202046 DHPSV are not
First address cleared.
[Zel/F1284 of DHPSY —>0
[2aE|R eH|Pp e HE| /81484 A« (DHPSV) A DHPRB (DHP recording
area) _
2046 The DHP trace buffer is
2048 bytes deep. The
first word is a pointer
to the next record.
— Polinter & + DHPSV (DHP save area)
Area to which the
contents of DHPRB are
saved if:
1: The CPU goes down.
2: The CPU causes an
—>r 24 error.
_/

DHP entries are
recorded sequentially.

- 32 -

3 SYSTEM MANAGEMENT

3.6 Floating-Point Operation

Only the H-S10/2 aHf of the 2« series supports floating-point
operation. Floating-point operation conforms to the IEEE standard.
For details on floating-point registers and floating-point
functions, refer to the "CP/M-68K V1.2 Operating System Guide" and
commercially available manuals for compilers.

The following paragraphs describe floating-point registers and the
error log for floating-point operations.

<Floating-point registers>

279 263 20

FPO

FP1l

FP2

FP3 Floating Point

FP4 Data Registers

FP5

FP6

FP7

231 223 215 27 20

{: 0 Eﬁ;ﬁﬁ%ﬁ?n C§g§¥21 FPCR Control Register

Condition : Exception | Accrued .
Code Quotient Status Exception FPSR Status Register

FPIAR Instruction Address
Register

- 33 -

3 SYSTEM MANAGEMENT

3.6.1 Notes on use of floating-point operations

When using built-in subroutines to perform floating-point
operations, suppress exception traps to prevent system errors. To
suppress exception traps, reset bits 28 to 215 (8)(of the control
register (cr) in the floating-point coprocessor (fpcp) at the
beginning of the built-in subroutine. To do this, the cr of the
fpcp (called the fpcr) must be saved and rewritten before the
floating-point operation is processed, the fpcr must be restored
after floating point processing as shown below.

A sample assembly language routine for saving, rewriting, and
restoring the cr of the fpcp is also shown below.

C does not support library functions to rewrite the cr of the
fpcp. For details of library functions, refer to the "CRM-68K V1.2
Operating System Guide."

<Processing with the fpcp cr in a built-in subroutine and cr
configuration>

Bullt-in subroutine

Y

g% Save the fpcr register.

Reset fpcr register.bits 28 to 215-
|
Floating-point

processing

!
(® Restore the fpcr register.

<Configuration of the fpcp cr>

215 214 213 212 211 210 29 28
[Bsun | snan JoperR] ovFL| UNFL| Dz |INEx1{INEX2]

l L—-INEXACT DECIMAL INPUT
INEXACT OPERATION

DIVIDE BY ZERO
UNDERFLOW

OVERFLOW

OPERAND ERROR
SIGNALLING NOT A NUMBER
BRANCHSET ON UNORDERED

- 34 -

3 SYSTEM MANAGEMENT
e

<Saving, rewriting, and restoring the fpcp cr>

Coding
fmove.l fpcr, (Save area) - @

faqd. 1 OxEf, fpcr seeerereenes @

(Floating-point processing)

JIOTQUOSSY

fmove. 1 (Save area), fpcr "'()

- 35 -

3 SYSTEM MANAGEMENT

3.6.2 Error log for floating-point operation

20

231

b))

FPO

FP1

FP2

FP3

FP4

FP5

FP6

FP7

FPCR

FPSR

FPIAR

«

b))

(F.U)

«

Case 1

256bytes

256bytes

/80400

/80500

- 36 -

4 MACRO INSTRUCTION

4 MACRO INSTRUCTION
o~

4.1 Macro Instruction

The macro instruction is an instruction issued by the user
program (task) to request processing by the operating system (OS)
(Compact PMS). When a macro call is used in a user program the
macro instruction is expanded to a TRAP (software interrupt
instruction) contained in the macro library.

When the program is executed, this trap instruction causes a
hardware interrupt, passing program control to 0S, and the 0S
initiates the macro process routine. (The trap instruction changes
the user mode to the supervisor mode, causing an interrupt by
software.) The user mode is a mode in which a user program is
executed. The supervisor mode is the system task process mode for
OS processing.

4.1.1 Macro library

The macro library is a group of subroutines for expanding macro
instructions written in a high-level language to the trap
instruction. When called, it stores the parameters (arguments) in
the user stack area in the order defined for each macro
instruction, and then issues the trap instruction. When writing in
C language, the programmer can write an instruction on the macro
instruction level without taking the trap instruction into
consideration, but must be concerned with the trap instruction if
it is written in Assembly language.

- 38 -

4 MACRO INSTRUCTION

User Program Macro Library Macro Process Routine

Call macro(a,b,c) ”’/////’;///}7

tores parameters,
a, b, and ¢ in the
user stack area.

Stores the SVC code
associated with the
macro instruction in
the 40 register.

Issues a trap

instruction. <5‘“‘*--_‘§_

Process of macro
instruction

Provided macro libraries differ in their storage location
according to the development environments.

@ Development on the PSEa : Macro libraries are provided in the
CPMSMLIB file on the CPMS system floppy disk.

@ Development on a personal computer: Macro libraries are provided

in the CPMS. LIB file on the system floppy disk of the C Program
Development Environment System (RPDP/S10).

- 39 -

4 MACRO INSTRUCTION

4.1.2 General rules
& @ Passing Parameters ¢
When the macro library is used, any parameter is passed using

its address.

B When prepared in C language:

long tn ; Describe the address where tn(=100) is stored as
5 an argument as shown on the left side. &tn is

the pointer to tn, and indicates the address

mmiﬂ&m); storing tn. Be careful not to write macro(tn).

tn=100 :

Many other descriptions are permitted in the C language.
What is important is that the address of a parameter is passed
to the macro library correctly. The following descriptions
produce the same results. Use any method convenient for your
situation. The macro descriptions shown in Chapter 2 are only

examples. Other descriptions may be used if they produce the
same result.

e When a parameter is the whole array:

long X[n] ;

macro(X) :

- 40 -

4 MACRO INSTRUCTION
RN

e When a parameter is one element of an array (The following
three descriptions are equivalent.):

long X([n] ; long X([n] ; long *X[n] :
X[i] =100 ; X[i] =100 ; * X[i] =100 :
macroi&x[i]): macro(X+i) macro(X (i]) :

e When a parameter is a simple variable (The following two
descriptions are equivalent.):

long X ; long *X ;
X=100 ; *X=100
macro(&X) macro(X) ;

4 MACRO INSTRUCTION

B When prepared in assembler:

Issue the trap #4 command after storing the parameters in the
user stack.

User Program

Y

(@ sSets parameters in
the user stack. Macro Process Routine

Y

C) Sets the top address of
the set parameter in a0
register.

Sets the parameter itself
in a0 register, if the
parameter is one and only
parameter.

(3) sets the SVC code in d0

Process macro
instruction

register. Zl
(@) 1ssues trap#4 command. @ and (2 may be
omitted if the macro
[& command has no
parameters.

¢ ®Return Code ¢ @

The result of the execution of a macro instruction is stored in
the Data Register 0 (d0). When the macro library is used, that
value is returned as the return code.

longimacro ; When the macro library is used, the
long *X ; user program should test the return

: code. The result of the macro
if (macro(X)) {...... }

instruction process is returned as

the return code.

- 42 -

4 MACRO INSTRUCTION

Although 0 is returned as the return code when a macro
instruction is processed normally, some macro instructions

reports normal end of the macro processing with a value other
than 0.

€@ Checking Parameters of Macro Instruction ¢ ¢

Since a macro instruction is a direct data exchange between a
user program and the Compact PMS, an error in parameters may
cause malfunctions and/or system down. The Compact PMS makes a
parameter check for the specific macros instructions, and aborts
the process of the task issuing the associated instruction if an
abnormal parameter is found.

4.1.3 Checking parameters

The validity of main parameters of CPMS macro instructions are
checked by software. If a parameter is determined as invalid as a
result of checking, a macro parameter error is reported and the task
which issued the erroneous macro instruction is aborted.

- 43 -

4 MACRO INSTRUCTION

4.2 Types
Type Name Explanation
RLEAS makes the task specified in the parameter enter idle
RLEAS state if the task i1s in dormant state. Otherwise, RLEAS
does not change the stage of the task.
Task
control QUEUE places the task specified in the parameter into a
management |[QUEUE queue if the task in not in dormant state or has not been
macros queued.
ABORT ABORT forcibly terminates the task specified in the
: parameter and makes the task enter dormant state.
DELAY DELAY interrupts the task (local task) that issued this
instruction, for the time specified in the parameter.
TIMER issues a request to start the task, specified in the
TIMER parameter, after the specified time elapses, then issues a
request to start the task in the specified cycle.
Timer CTIME CTIME cancels a TIMER macro instruction.
management
macros STIME STIME sets or updates the absolute time. *1
(GTIME GTIME gets the current time.*1
WAKE WAKE registers the specified task in the time management
table and places it in the scheduled state. *1
CWAKE CWAKE cancels the task registered by WAKE.*1
CHAP CHAP modifies the priority level of the task specified in
Tagk state the parameter. :
management] .
Macros CHMOD modifies the state register level and makes the task
CHMOD enter interrupt not-allowed state.
SFACT SFACT sets a factor (0 to 16) to the task specified in the
parameter.
Factor GFACT fetches the factor set for the task (local task) that
management |GFACT issued this macro instruction.
macros
USPCHK checks whether the task (local task) that issued
USPCHK this macro instruction is using a stack more than the byte
length specified in the parameter.

*] Optional memory with a clock is required for the 2a¢ and 2¢E.

- 44 -

4 MACRO INSTRUCTION

4.21 rleas (release)

Function Checks to determine if the task specified by parameter
tn is in dormant (held) state or not. If the task is
in dormant status, the status is changed to idle
(executable) status. If the task is not in dormant
status, no operation is executed.

Issue Assembler C Language
Procedure
MOVE. L #2, DO long tn
MOVE. L TN, A0 :
TRAP #4 rleas (&tn) :

Parameters | tn: Double precision integer variable or constant.
This is the task number of a called task to be
set to the idle status. Specify as follows:

31 8 7 0
0 < 0 task number
Return 0: Normal end
Code Return code is always zero.

Parameter If 0 ¢ tn ¢ 128 is not satisfied, the OS assumes a
Check parameter error and aborts the calling task, setting
it to the dormant status.

* Two types of task appear in the descriptions of this macro
instruction: calling task and called task. A calling task
request the O0S (Compact PMS) to change the status of the called
task specified by tn in the macro instruction. 1If tn is not
specified the macro instruction parameter processed is the
calling task itself. 1In this case the calling task = called task.

- 45 -

4 MACRO INSTRUCTION
L

4.2.2 q ueue (queue (1))

Function Changes a called task from the idle status to the
execution wait status. The called task (specified by
a parameter, tn) is moved to the execution wait queue
by the 0S unless the called task is in dormant status
or is not registered. The called tasks in the
execution wait queue are executed in the order of
priority levels then queue order (First-In First-
Out). Thus if the priority level of the called task
is higher than the priority level of the calling task,
program control is transferred to the called task.
Program control is returned to the calling task, after
processing the Queue macro, if the level of the called
task is equal to or lower than the level of the
calling task. When the called task is placed in the
execution wait queue, the "fact" parameter is stored
in the initiation factor table. The task initiated by
the 0S can read the initiation factor by using the
GFACT macro instruction.

Issue Assembler C Language
Procedure
MOVE #3, DO long tn, fact ;
LEA PARA, A0 :
TRAP #4
PARA: DC. L 1IN queue(&tn, &fact)
DC. L FACT

Double precision integer variable or constant;
Task number of the called task

fact: Double precision integer variable or constant,
Initiation factor to be read by the called task
when the task is started

Parameters | tn

Return 0: Normal end (Task is placed in the execution wait

Code queue.)
1l: The specified task was in the dormant status.

Parameter If 0 < tn g 128 and 0 g fact ¢ 16 are not true, a
Check parameter error is assumed. The calling task is
aborted and changed to dormant status.

- 46 -

4 MACRO INSTRUCTION
RS

(queue (2))

Remarks . If the called task, specified by the QUEUE macro,
has already been queued, the called task will be
queued again. A task can be queued once or twice.
If a task is queued twice and the first execution of
the task is aborted, the task is not executed for
the second time.

If a queue instruction is issued with the same
factor before the first factor is fetched (by a
gfact instruction), fact=0 is used when the task is
executed for the second time. The same factor is
not stored for the second execution in this case.

- a7 -

4 MACRO INSTRUCTION
L

4.23 abort(abort)

Function Forces an end to the execution of the called task,
setting the called task to dormant status. If an
initiation factor is already stored in the initiation
factor table for the called task the factor is deleted.

Issue Assembler C Language
Procedure
MOVE #1, DO long tn ;
MOVE. L TN, A0 :
TRAP #4 abort (&tn) ;

Parameters | tn: Double precision integer variable or constant.
Task number of a called task to be set to dormant

status.
Write it as follows:
31 8 7 0
0 < 0 task number
Return 0: Normal end
Code Return code is always zero.

Parameter If 0 ¢ tn ¢ 128 is not true, a parameter error is
Check assumed. The issuing task is aborted and changed to
dormant status.

Remarks The status of the called task is changed from the
temporarily modified status to the initial status.

- 48 -

4 MACRO INSTRUCTION
L -

4.24 delay(delay)

Function Suspends the task issuing this macro instruction for a
time specified by a parameter. Control is passed to
other task during the suspension, and returned to the
calling task after the specified suspension time, if
there is no other operable task (a task of a level
higher than the issuing task or a task of the same
level initiated earlier).

Issue Assembler C Language
Procedure
MOVE #6, DO long ¢t ;
MOVE. L. T, A0 :
TRAP #a delay (&t) ;

Parameters | t: Double precision integer variable or constant
specifying a period of time for suspension in
units of msec.

Return 0: Normal end

Code 1: Suspension is not possible because of the timer
table (TRB) area is full.

2: Suspension is not possible because the stack save
area (ARSB) is full.

Parameter If 0 ¢ t g 86400000 is not true, a parameter error is
assumed. The issuing task is aborted and changed to
dormant status.

Remarks . The parameter must be 0 < t £ 86400000 (msec).
. Issuing task not suspended, if the return code is
not 0.

- 49 -

4 MACRO INSTRUCTION

4.25 timer (timer)

Registers the task specified by tn to the timer table

Function
(TRB), and initiates it when a specified time elapsed.
The task is initiated each time the cycle time elapsed.
When the cycle time (cyt) is set to 0, the task
specified by tn is started only once after elapse of the
specified time.
The initiation factor specified by parameter fact is
passed to the specified task at initiation.
Issue Assembler C Language
Procedure
MOVE #7, DO
LEA PARA, A0 long tn, t, cyt, fact ;
TRAP #4 :
PARA: DC.L TN timer (&tn, &t,
DC.LL. T &cyt, &fact) ;
DC.L CYT
DC.L ~ FACT
Parameters | tn : Double precision integer variable or constant
specifies the task number of the called task.
t : Double precision integer variable or constant A
period of time before the first initiation
(msec)
cyt Double precision integer variable or constant
specifies a cycle (msec).
fact: Double precision integer variable or constant
specifies the initiation factor to be passed to
the called task.
Return 0 : Normal end
Code 1 : Process ended unsuccessfully because the timer table
was full.
Parameter If 0 < tn = 128, 0 < t = 86400000, 0 = cyt =
Check 86400000, 0 = fact = 16 are not true, or PARA is not on
a word boundary, a parameter error is assumed. The
1ssu1ng task is aborted and changed to dormant status.
Remarks The parameter t must be 0 < t = 86400000 (msec).
The parameter cyt must be 0 = cyt = 86400000 (msec).
The specified task, specified by parameter tn, is not
initiated if the specified task is in dormant status.
A ctime macro instruction is used to cancel a timer
macro instruction.

- 50 -

4 MACRO INSTRUCTION
e

4.2.6 ctim e (cancel time)

Function Cancels the timer macro instruction. The 0S checks
the timer table (TRB) for values specified by
parameters tn and fact. All tasks matching the tn and
fact combination of parameters of this macro
instruction are deleted from the TRB.

Issue Assembler C Language
Procedure

MOVE #8, DO

LEA PARA long tn, fact :

TRAP #4 :

PARA: DC.L TN ctime (&tn, &fact) ;
DC.L FACT

Parameters | tn Double precision integer variable or constant.

The number of the task, specified in a previous

timer macro instruction, to be cancelled.

fact: Double precision integer variable or constant.
The initiation factor that was specified along
with the task number from a previous timer

macro instruction.

Normal end
tn and fact specified by the parameters are not
registered in the timer table (TRB).

Return
Code

= O

Parameter If 0 < tn ¢ 128, 0 g fact g 16 are not true, or PARA
Check is not on a word boundary, a parameter error is

' assumed. The issuing task is aborted and changed to
dormant status.

Remarks . This macro instruction cannot abort the task
specified by this macro if the task has been
initiated and is in execution. The task will not be
initiated again after it completes its present
execution.

. All timer macro instructions matching the tn and
fact combination specified in the ctime macro will
be cancelled.

- 51 -

4 MACRO INSTRUCTION

4.2.7 c h a p (change priority level)

Function Changes the priority level (or execution level) of the
task specified by parameter tn. If the task specified
by parameter tn is given a higher priority level than
the priority level of the task which issued this macro
instruction, control is passed to the task which has
the higher priority.

Issue Assembler ' C Language
Procedure

MOVE #10, DO

LEA PARA, A0 long tn, level ;

TRAP #a i

PARA : DC.L 1IN chap (&tn, &level) ;
DC.L LEVEL :

Parameters | tn

oo

Double precision integer variable or constant
task number of the task whose priority level

is to be changed.

level: Double precision integer variable or constant
specifying the priority level being given to

the specified task.

Normal end
Process ended unsuccessfully because the stack
save area (ARSB) was full.

| Return 0
Code 1

Parameter If 0 ¢< tn g 128, 0 g level ¢ 4 are not true, or PARA
Check is not on a word boundary, a parameter error is
assumed. The issuing task is aborted and changed to
dormant status.

Remarks . If a task issues a chap macro instruction to lower
its own priority then control might be passed to
another task.

. If the task specified by this chap macro instruction
has already been initiated, it is assumed that the
task was initiated last among the tasks with the
same level as the level specified the parameter.

. The new priority level specified by this macro is in
affect until the specified task ends. The specified
task will be executed at its original priority level
when it is executed again.

- 52 -

4 MACRO INSTRUCTION
L e

4.2.8 ¢ hm o d (change mode (1))

Function Changes the contents of the status register of the
issuing task. The interrupt mask level can be changed
to allow interrupts to be inhibited. Only levels 0 to
3 can be inhibited.

Issue Assembler C Language
Procedure
MOVE.L #9, DO short wsr
MOVE. W WSR, A0 :
TRAP #4 chmod (&wsr) ;

Parameters | wsr: Single precision integer variable or constant
The new contents to be loaded into the status

register.
Return Returns the contents of the status register before it
Code is changed.
Parameter None
Check
Remarks . Allows changes of the interrupt mask level and

condition code in the status register (SR).

15 13 10 9 8 4 3 2 1
T S |11 I X{N|zZ|V]C

[;——Condition code

Interrupt mask level

Supervisor mode

) Change not permitted
—— Trace mode

. Only levels 0 up to 3 can be inhibited thus values
up to 3 may be loaded. If a level higher than 3 is
specified the interrupt mask level is set to 3.

. Although the interrupt mask level may be changed by
this macro instruction , the interrupt inhibit time
must be kept to a minimum (the interrupt inhibit
time must not exceed 2 msec).

- 53 -

4 MACRO INSTRUCTION
L e

(change mode (2))

Remarks . The status changed by this macro instruction is
effective only within the task issuing the
instruction. No other tasks are affected.

. The status changed by this macro instruction is
effective until the task issuing this macro
instruction is ended or aborted.

. The lower word of the return code contains the
contents of the status resister of the issuing task
at the time this macro instruction was issued. The
upper word contains zero.

The following shows the H-S10/2a OS organization.

(GR interrupt)'—‘EZPU initial processing] Priority

level

(Level 7 interrupt Power failure/recovery

processing (Note 1) High

(Level 6 intermpt}—EPU error processing }~ zzg)ecduler sgigi;:‘:;i;s

(Level 5 interrupHnr.er-CPU link processingJ

CLevel 4 intermptHH-7338 line processing I

(Level 3 interrupt)—-—{gmote I/0 processing }—

Extended module
processing
{(Note 1)
(Level 2 interrupg——-g’rask timer processing N——
—‘lx‘imer/one-shot processing}-—- E:’k execution
M
—ISequence cycle processingl——
Yes
Q..evel 1 in\:errupt)— N-coil processing }-—
-—rP-coil processing }-—
Arithmetic instruction
—[processing
—-[Counter processing l_ Low
L_{ Ladder program _—
termination processing End Start
Level 0 User task 0s idle
execution |processing
L LED
. display
Note 1: The processing takes place only with CPMS d OS. pocessing
H~S10/2a OS Organization

- 54 -

4 MACRO INSTRUCTION
L e

429 sfact(setfactor)

Function Sets the initiation factor for the specified task
specified by parameter tn. The initiation factor is
stored in the factor table of the task specified by
parameter tn. This initiation factor may be fetched
by the GFACT macro instruction.

Issue Assembler C Language
Procedure

MOVE.L #4, DO long tn, fact ;

LEA PARA, A0 :

TRAP #4

PARA : DC.L TV sfact (&tn, &fact) ;

DC.L FACT H

Parameters | tn : Double precision integer variable or constant

specifies the number of the called task to
which the initiation factor is being set.

fact: Double precision integer variable or constant
specifies the initiation factor.

Normal end

The specified initiation factor is already
registered.

2: The specified called task is in the dormant status.

Return 0
Code 1

Parameter If 0 ¢ tn g 128 and 0 ¢ fact ¢ 16 are not true, a
Check parameter error is assumed. The issuing task is
aborted and changed to dormant status.

Remarks . The initiation factor specified can be a number from
0 to 16.

. The initiation factor is not set if the specified
task is in dormant status.

. Multiple setting of the same initiation factor is
not allowed. If attempted, the return code is set
to 1.

. The initiation factor set by this macro instruction
is deleted from the initiation factor table when
fetched by the gfact macro instruction. All
initiation factors are deleted when an abort macro
instruction is issued.

- 5§ -

4 MACRO INSTRUCTION
e .

4.2.10 g fac t(get factor)

Function Fetches an initiation factor that was previously set
for the task issuing this gfact macro instruction.

The initiation factors are fetched in ascending order
of their values, one by one, from the factor table of
the task issuing the gfact macro instruction. The
fetched factor is deleted from the table. The
remaining initiation factors may be fetched by issuing
other gfact macro instructions.

Issue Assembler C Language
Procedure
MOVE.L #5, DO long fact ;
LEA FACT, A0 :
TRAP #4 gfact (&fact) :

Parameters | fact: Double precision variable

The factor fetched by this macro instruction is
stored in the parameter fact. (From the factor
table of the task that issued this macro

instruction)
Return 0: Normal end
Code Return code is always zero.

Parameter A parameter error occurs if fact is not on the word
Check boundary. The issuing task aborts and is placed in
dormant status.

Remarks . After a task is initiated, fetch the initiation
factors by issuing this macro instruction. End the
task after all initiation factors have been fetched.

. If a task issues this macro instruction and no
factor has been set for the task, zero is returned
to the parameter fact. A return of zero in
parameter fact can be used to determine if all
initiation factors have been fetched.

- 56 -

4 MACRO INSTRUCTION

4.2.11 u s p ¢ h k (user stack pointer check)

Function Checks to determine if the task issuing this macro
instruction has exceeded the number of bytes of stack
area specified by the parameter usebyt. It is the
responsibility of the user to determine where to use
this macro instruction in a program.

Issue Assembler C Language
Procedure
MOVE.L #11, DO long usebyt, addr :
LEA PARA, A0 H
TRAP #4
PARA : DC.L USEBYT uspchk (&usebyt, & addr)
DC.L ADDR

Parameters | usebyt: Double precision integer variable or constant
Specifies the byte length of the stack area
reserved for the issuing task.

addr : Double precision variable
The number of unused bytes is returned as the
execution result of this instruction when
it ends normally, and the number of bytes
exceeding the limit, when it ends abnormally.

Return 0: Normal end (Space in the stack area)
Code The number of empty bytes is stored in addr.
1l: No space in the stack area
The number of excessive bytes is returned in addr.

Remarks . This instruction works most effectively when
executed in the deepest location of the program
nesting.

. It is advised to delete this instruction from the
program upon completion of debugging.

. The user must specify error handling for return code
of 1.

- 57 -

4 MACRO INSTRUCTION
o

4.2.12 stim e (set time (1))

Function Sets the actual time. The time, specified by a
parameter, is set in the optional expansion memory
that is equipped with the clock feature.

Issue Assembler C Language
Procedure
MOVE.L #13,DO0 typedef struct {
LEA PARA, A0 long sec H
TRAP #4 short day :
TST.L DO short month H
H short year :
PARA: DC.L SEC short week ;)} TIME ;
DC.W DAY
DC.W MONTH main()
DC.W YEAR {
DC.W WEEK long rtn;

static TIME time {
SEC,DAY,MONTH, YEAR,WEEK, } H

.
.

rtn = stime(&time)

Parameters | time Area storing the time to be set. (12 bytes)
Specify sec, day, month, year, and week as follows:
sec : Time given in units of seconds, assuming 0

a.m. (Midnight) is 0.
day : Day

month: Month

year : Year A.D.

week : Day of the week
Return 0: Normal end
Code l: RTC hardware, not mounted

This macro instruction has no effect when the return
code is not 0.

- 58 -

4 MACRO INSTRUCTION
e

(set time (2))

Parameter A parameter error occurs and the issuing task aborts,
Check going to dormant status, when:

0 g sec ¢ 86400 is not satisfied.
1 g day £ 31 is not satisfied.
1 ¢ month ¢ 12 is not satisfied.
1900 ¢ year £ 2199 is not satisfied.
1

S week ¢ 7 is not satisfied.

Remarks (a) The optional expansion memory with clock feature
is necessary for using this macro instruction.

(b) Hours and minutes are set in the sec area as

follows:
Example: Setting A hour, B minute, C second
SEC = A x 3600 + B x 60 + C

(c) Day of the week is represented by a number as
shown below:

Week 1 2 3 4 5 6 7

Day of Week | Sun.|Mon.|Tue.|Wed.|Thu.|Fri. |Sat.

(d) Because of the restrictions on the expansion
memory with clock feature, an error might occur
in updating the date if the time setting is made
as follows:

Status after updating the set date Example
and time

If 23 hr.:59 min.:59 sec., 29th Mar. 29 =~
day of any month is set, time is Apr. 1

updated to the 1lst day of the next
month. (Jan. to Dec. except Feb.
29 of a leap year)

If 23 hr.:59 min.:59 sec., 30th Apr. 30 -
day of April, June, September, and | Apr. 31

November is set, time is updated
to the 31st of respective months.

If 23 hr.:59 min.:59 sec. on Feb. Feb. 28, '83 =~
28 is set for a common year, time Feb. 29, '83
is updated to Feb. 29.

If 23 hr.:59 min.:59 sec. on Feb, Feb. 28, '84 =~
28 in a leap year is set, time is Mar. 1, 's84
updated to March 1.

- 59 -

4 MACRO INSTRUCTION
L e

(set time (3))

Remarks (e) The issue of a stime macro instruction can affect
the initiation time of a task that has been
scheduled by a wake macro instruction. The
effect is dependent upon the relationship between
the time setting before the issue of the stime
macro instruction and the new time set by the
stime macro instruction.

T¥P? o? Set Time Back Set Time Forward
Initiation
Initiation by (Don't care code spe- If the initiation time

specified time cified in wake macro.) | is passed by because the
If the initiation time | time was set forward,
becomes greater than the scheduled initia-

24 hours, because the tion is moved to the
time was set back, the | same time of the next
scheduled initiation day.

is moved to the same
time on the day after
the new date set.

(When the absolute
time is specified by
the wake macro)

The initiation time is
not affected by the
change of the time

setting.
Cyclical initia-|Same as above. If the initiation time
tion by is passed over because
specified time the time was set

forward, the scheduled
initiation is moved to
time when the wake macro
first scheduled
initiation plus a cycle
time that falls after
the newly set time.

(f) Change of time must be within the current time
+24 hours. If specified otherwise, the affect on
scheduled task is the same as if the time change
was within 24 hours independent of the date being
set ahead or back.

4 MACRO INSTRUCTION
e

4.2.13 gtim e (get time (1))

Function Fetches the actual time. The time, kept by the
expansion memory with clock feature, is stored in an
area specified by a parameter.

Issue Assembler C Language

Procedure
MOVE.L #14,D0 typedef struct {

LEA PARA, AO long sec :
TRAP #a short day H
TST.L DO short month H
H short year ;
PARA: DS.L 1 ..eens (sec) short week ; } TIME ;
DS.W 1 ..eee (day) main()
DS.W b A (month) {
DS.W 1 ceieen (year) long rtn;
DS.W 1 .eeeen (week) static TIME time
rtn:= gtime(&time);
}

Parameters | time Area for fetching the time (12 bytes).
The result of the execution of this instruction
is stored in sec, day, month, year, and week as
follows:
sec : Time is stored in units of seconds,

assuming 0 a.m. (Midnight) is 0.
day : Day is stored.
month: Month is stored.
year : Year A.D. is stored.
week : Day of the week is stored.
Return 0: Normal end
Code 1: Expansion memory with clock feature is not mounted.

- 61 -

4 MACRO INSTRUCTION
e e e

(get time (2))

Remarks (a) The optional expansion memory with clock feature
is necessary for using this macro instruction.

(b) Time is stored in the sec area in the following
format:

When A hours B minutes C seconds:
sec = A x 3600 + Bx 60 + C

(c) Day of the week is represented by a number as
shown below:

Week 1 2 3 4 5 | 6 7

Day of Week |Sun.|Mon.|Tue.|Wed.|Thu.|Fri.|Sat.

- 62 -

4 MACRO INSTRUCTION
e

4.2.14 w a k e (wakeup task (1))

Function Registers the specified task along with mode and
factor, all specified by parameters, into the system
table (ARB) which changes the task status to
scheduled. The specified task is initiated at the
time specified by parameter time. If the mode
specified is cyclical initiation then the specified
task is also initiated at every cycle time after the
first initiation. The factor, specified by parameter
fact, is passed to the task as the initiation factor
whenever it is initiated.

Issue Assembler C Language
Procedure
MOVE.L #15,D0 typedef struct {
LEA PARA, AOQ long sec ;
TRAP #4 short day H
TST.L DO short month ;
short year ;
PARA: DC.L 1D short week ; } TIME ;
DC.L TN main()
DC.L FACT {
DC.L SEC long rtn:
DC.W DAY static long id, tn, fact, cycle;
DC.W MONTH static TIME time {
DC.W YEAR SEC, DAY, MONTH, YEAR, 0 }:
DC.W DUMMY H
DC.L CYCLE :
H rtn = wake (&id, &tn, &fact, &time,
&cycle);
} 3

Parameters | id : Double precision integer variable or constant
Initiation mode (0: Time initiation
1: Cyclical initiation)

tn : Double precision integer variable or constant
number of the specified task to be initiated

fact : Double precision integer variable or constant
Initiation factor to be passed to the
specified task being initiated

- 63 -

4 MACRO INSTRUCTION
[R

(wakeup task (2))

Parameters | time : Table consisting of 12 bytes which contains

the initiation time

sec : Time is stored in units of seconds,
assuming 0 a.m. (Midnight) is 0.

day : Contains day.

month: Contains month.

year : Contains year A.D.

week ¢ No use Set to 0.

cycle: Double precision integer variable or constant

Cycle time

(1) Relationship between id, time, and cycle

id time cycle Description
0 | Initiation 0 [Time Wake-Up]
time A specified task is initiated

only once at the time specified
by a parameter, time.

1 | First Time of cyclic [Time Cyclic Wake-Up]
initiation | initiation A specified task is initiated
time after the first | at the time specified by the

initiation time | parameter, time, and afterwards,
it is initiated cyclically as
specified by cycle.

(2) The initiation time may be set as shown below by
using 'Don't Care' code (=-1):

No.| year | month | day sec Initiation Time
1 | 1990 1 10 36610 | Initiated at 10 hr.:10 min.:
10 sec. on Jan. 10, 1990.

2 -1 1 10 36610 | Initiated at 10 hr.: 10 min.:
Don't 10 sec. on Jan. 10 in this or
care next year., (%%)

3 (*) -1 10 36610 | Initiated at 10 hr.: 10 min.:
Don't , 10 sec. on 10th day in this or
care next month.

4 (*) (*) -1 36610 | Initiated at 10 hr.: 10 min,

Don't 10 sec. of today or tomorrow. (%%)
care

(*) Any data higher than 'Don’'t care' code is ignored.

(**) If a specified time precedes the current time, initiatiom is
made in the next year or the next month or tomorrow,
otherwise it is made in this year or this month or today.

4 MACRO INSTRUCTION
e

(wakeup task (3))
Return 0: Normal end
Code 1: System table (ARB) is full.
2: Expansion memory with clock feature is not

mounted.

This instruction is not effective when a return code
is not 0.

Parameter The task aborts, going to dormant status, if the

Check parameter conditions are as shown below:
Other than 0 g id £ 1
Other than 1 ¢ tn g 128
Other than 0 g fact g 16
Other than 0 ¢ sec < 86400
Other than 1 g cycle g 86400
Other than 1 g day g 31
Other than 1 ¢ month g 12
Other than 1900 g year g 2199

Remarks (a) The parameter, fact, must satisfy 0 g fact g 16.

(b) The sec within parameter, time, should satisfy 0
£ sec < 86400. This time must be set in units
of seconds starting at 0 a.m.

(c) Initiation is not made if the task specified by a
parameter, tn, is in dormant status at the
scheduled initiation time.

(d) To cancel this macro instruction, the cwake macro
instruction is necessary.

(e) 1In cyclic initiation, 'cycle' must satisfy 0 <
cycle g 86400.

(f) Even though the tasks registered in the system
table (ARB) are set to scheduled status by this
macro instruction, the system table is not
released unless the registrations are deleted by
the cwake macro instruction.

(g) If the specified time precedes the current time,
the initiation is made at the same time tomorrow.

- 65 -

4 MACRO INSTRUCTION
L e

4.2.15 c w a k e (cancel wakeup task)

Function Cancels a task that was registered by the wake macro
instruction. A check is made to determine whether or
not the task, specified by parameter tn, is registered
in the system table (ARB). If the initiation factor
in the table agrees with the factor specified by
parameter fact then the task is deleted from the
system table and its registration is canceled. All
the tasks in the table whose task number and
initiation factor agree with those specified by the
parameters are deleted.

Issue Assembler C Language
Procedure -
MOVE.L #16,D0 main()
LEA PARA, AD {
TRAP #4 long tn, fact, rtn;
TST.L DO :

rtn = cwake (&tn, &fact):

PARA: DC.L TN
DC.L FACT

}

Parameters | tn : Double precision integer variable or constant
specifies a task number.

fact: Double precision integer variable or constant
specifies the initiation factor.

Normal end

Unsuccessful end.

No tasks were found in the system table (ARB)
matching the specified task number and initiation
factor.

2: Expansion memory with clock feature is not mounted.

Return
Code

= O

s oo

Parameter The issuing task aborts going to the dormant status if
Check the parameters are:

1 Other than 1 g tn g 128

2 Other than 0 g fact g 16

Remarks (a) It is not possible, with this macro instruction,
to abort a scheduled task that is already
initiated and in execution. The following
scheduled initiations are cancelled.

(b) A number of wake instructions may be cancelled by
one cwake instruction, if their tn and fact agree
with those specified by this macro instruction.

- 66 -

4 MACRO INSTRUCTION

4.2.16 rserv (reserve (1))

Function Reserves an area of memory for the task issuing this
macro instruction. 1If the issuing task has already
reserved the resource, by using the rserv macro
instruction, this instruction is ignored.

If the resource is not yet reserved a check is made to
determine if the intended area is reserved by another
task, such that the area specified by the parameters
is reserved only when the area is not reserved by any
other task. If the area is reserved by another task
the task issuing this macro instruction is set to wait
status until the specified area is released by a free
macro instruction.

The issuing task, which is in wait status, reserves
the specified area and receives control when the area
is released and all the area specified is available
for its reservation.

Even though an area is reserved by this instruction,
access to the area by other tasks cannot be prevented
since the reservation of the area by this macro
instruction is different from the interlock by the
hardware system. To prevent the area from being
accessed, a rule "to reserve an area by using this
macro instruction before making an access to this
area" must be observed by all tasks.

- 67 -

4 MACRO INSTRUCTION
L

(reserve (2))
Issue Assembler C Language
Procedure

MOVE.L #17,D0 typedef struct {
LEA PARA, A0 long type
TRAP #4 long *table :;
IST.L DO long top

i long last ; } para ;

PARA: DC.L CASE

DC.L TYPEL | main()
DC.L TABLE1 {
DC.L TOP1 Case #1 long case, rtn;
DC.L LAST1 static para paral {
DC.L TYPE2) 0, &tablel(0), topl, lastl};
DC.L TABLE2 static para para2 {
DC.L ropz [Case #2 0, &table2(0), top2, last2};
DC.L LAST2 | :

H rtn = rserv (&case, ¶l,

: ¶2, ...):

}

Parameters | case : Double precision integer variable or constant

The number of cases of the resource to be

occupied

Double precision integer variable or constant

Type of the resource to be occupied

'0' must be specified in CPMS.

table: Double precision integer variable or constant
Table head address of the area to be occupied

top : Double precision integer variable or constant
Relative byte address from the head of the
area to be occupied

last : Double precision integer variable or constant
Relative byte address from the head of the
area to be occupied
The shaded portion in the following figure is
occupied.

.o

type

N table

D% |

le— top—>

< last >

- 68 -

4 MACRO INSTRUCTION
s

(reserve (3))

Reserve succeeded

The rserv macro has been issued.

A parameter contains an illegal specification.
ARB is full.

Return
Code

wWN O

This macro instruction has no effect if the return
code is not 0.

Parameter The issuing task aborts the execution, going to

Check dormant status if the parameter does not satisfy 1 g
case g 32.
Remarks (a) This macro instruction loses its effect when the

task ends (Exit or Abort). :

(b) If the intended area overlaps the area occupied
by other task, the area is not occupied. The
task which issues this macro instruction is set
to wait status (Suspension of Execution)

(c) The same task cannot issue this instruction twice
in succession. The resource to be reserved
should be reserved by one rserv instruction.
However, it is permitted to issue this
instruction again after all the resources are
released by the free macro instruction.

(d) It is advised to make the term of the reservation
by this instruction as short as possible.

(e) This instruction does not control the 0S and
hardware.

(£) Avoid issuing this macro instruction after
issuing a macro instruction which suspends the
execution of other tasks. It may cause a
deadlock if the resource is already reserved by
the associated task.

(g) 1If exited without releasing all the reserved
resources by using the free macro instruction,
"RSV ERR" is shown on the console LED of CPU.

- 69 -

4 MACRO INSTRUCTION
e

4.2.17 free (free (1))

Function Cancels the reservation by the rserv macro instruction
and releases the reserved resources for use by other
tasks. The reserved resources are released if the
parameters of this instruction indicate resources
reserved by a rserv macro instruction previously
issued from the same task.

Issue Assembler C Language
Procedure
MOVE.L #18,D0O typedef struct {
LEA PARA, A0 long type :
TRAP #4 long *table :
TST.L DO long top ;

long last ; } para ;

evsneseee

PARA: DC.L CASE main(
DC.L TYPEL | {
DC.L TABLEl long case, rtn;
DC.L TOP1 (Case #1 static para paral {
DC.L LAST1 0, &tablel(0), topl, lastl}:
DC.L TYPE2 | static para para2 {
DC.L TABLE2 0, &table2(0), top2, last2}:
DC.L TOP2 Case #2 :
DC.L LAST2 j rtn = free (&case, ¶l,

S¶2, ...) :

sessscsesve
sessse

Parameters | The same as the rserv macro instruction

Return 0: Cancel of reservation succeeded for all cases

Code specified.
1l: At least one of the specified parameters does not
indicate a resource reserved by this task.

Reservation of the resource which satisfies the
specified parameter is cancelled, even when return
code = 1.

- 70 -

4 MACRO INSTRUCTION

(free (2))
Parameter The calling task aborts, going to dormant status,
Check if 1 ¢ case £ 32 is not satisfied.
Remarks (a) When the reserved resources are released by this

macro instruction, the task waiting to reserve
those resources are released from the wait status.

(b) The parameters of the free macro instruction must
agree with those specified in the rserv macro
instruction. If not, the resources in
reservation can not be released.

Resource specified
} by a case of parameters

_table(R)last () ;:.n the rserv macro
<—t0p (R) —> instruction
YA/ S
[] ‘
' H
§ E: ; I:gt]:.eased Resource specified by a

> case of parameters in the

} Released

[€— top (F) —>

A<——— last (F) —————>
L— table (F)

Conditions of Releasing a Resource

table(R) = table(F)
top(R) = top(F)
last(R) = last(F)

- 71 -

4 MACRO INSTRUCTION
Co

4.2.18 m vm e m (move memory (1))

Function

Writes data into an area of memory as specified by the
parameters for this macro instruction. This
instruction enables data to be written into protected
memory (except OS program area).

Issue
Procedure

Assembler C Language

MOVE.L #19,D0 main()
LEA PARA, A0 {

TRAP #4
TST.L DO

long rtn, wno, saddr, daddr:

rtn = mvmem (&wno, &daddr, &saddr):;

LTI

DADDR
SADDR

DC.
DC.

sesese 1 [[eee

}

Parameters

Double precision integer variable or constant
Specifies the number of words to be
transferred in units of words (16 bits).
Double precision integer variable or constant
Specifies the leading address of the data
destination

Double precision integer variable or
Specifies the leading address of the
source

wno

daddr:

constant
data

saddr:

Return
Code

0: Normal end Always O

Parameter
Check

The issuing task aborts its execution and goes to
dormant status if:

. 0 < wno g 256 is not satisfied, the area specified
by daddr is write-protected by the OS.

- 72 -

4 MACRO INSTRUCTION
o

(move memory (2))

Remarks (a) The number of words to be transferred must
satisfy 0 < wno £ 256.

(b) The source and destination areas can not be
overlapped. If there is any overlap, data might
not be written correctly, as the transfer of data
always begins with the lower address.

Source of Destination
Transfer of Transfer
saddr r’—‘_—’/
T FesszesmemneenesTE —daddr
wnol | el
: Not transferred
,j;;f;22;7 } correctly because
7. of overlapping
”——__,/ ”___.,/

(c) This instruction enables data to be written into
the memory protect area regardless of whether the
protect switch is in ON or OFF state. The OS
program area and the system area re always write-

protected.
(Memory protect area)
000000 ¢ \ FFFFF
Siguigﬁe 0S Program
Dres area

e - 1 i
1 60000 [1
1 1 I)
| 60220 . 63000 - |
! BF' [i
, 00 63800“ TFFEF_ | | |
;7) T.U.C o ! !
7 % Registervggue Sequeni? program , |
77 | }
I }
__________________________ 1
P 1
1 . FC000
| 0000 r0800) FFFEF_|
1.0 Cl 7777777777777 svarom canios. [Enpanslond

Count 0OS Program + wor Y ':
valwe /s rrirsrss st rlATCE, etc. 0s area,

[Z1 : Write-prohibited area
(*) : Differs according to OS versions.

- 73 -

4 MACRO INSTRUCTION
O

4.3 Supplement

4.3.1 Relationship between rserv and free

e RSVB (Reserve Block) stores the parameters from each issuance of
rserv macro. It is sized for a maximum of 32 cases of reserved
resources. An error occurs if an attempt is made to reserve more
than 32 areas without issuing a free macro instruction.

e If the value of the parameter table of the rserv macro
instruction are different from that of the free macro
instruction, they are treated as different areas. Thus if the
data table is not loaded correctly abnormal processing would be
expected.

Actual Memory

Example Task #1
Parameter 1 7///////// Parameter 2)

tablel —> kAAAAAAAAAA o mmamcanans

iopl <"Eggé32 Occupied by .
astl last? Task #2 X Occupied by
Task #1

7 ,

/”—“\\\~—//

In the above example, it is clear that the areas specified by
the parameters 1 and 2 are actually overlapped. However, OS
treats them as different areas because the values of parameters 1
and 2 are not equal, and both Task #1 and Task #2 reserve their

own areas. This makes the normal exclusive control impossible.

e If a task with the resource reserved by the rserv instruction
ends without cancelling the reservation of the resource by using
the free macro instruction, "RSV ERR" is displayed on the Console
LED of the CPU.

- 74 -

4 MACRO INSTRUCTION

4.3.2 Relationship between wake and cwake

e A maximum of 8 tasks can be queued for time initiation by the
clock feature (scheduled status). Caution should be exercised
because a system table (ARB: Alarm Recording Block) error occurs
if use of more than 8 tasks is attempted.

e Once a task is scheduled by the wake macro instruction, it is
removed from the schedule only by the issue of the cwake macro
instruction or when the CPU is reset (power outage/recovery).
Therefore a task is always queued by the OS at its scheduled time
unless it has been aborted by an abort macro instruction. (It is
not actually initiated because it is not in the idle status.)

e Caution should be exercised because the task scheduling by the
wake macro instruction is affected by the stime macro
instruction. When issuing the stime macro instruction, it is
best to issue it in the initial task or before issuing the Wake
macro instruction to a task.

e A task is initiated next day if non-existent day is set, since a
date check is made within the range of 1-31.

Example: If "10:00 April 31st 1988" is specified, the task is
initiated at 10:00 on May 1. <Caution should be used
because the task is not initiated, if specified April
31 using Don't care code.

- 75 -

4 MACRO INSTRUCTION
R e

4.3.3 Relationship between stime and gtime

e The relation between a date and day of the week is not checked
within the 0S. Users must use caution when setting with the
stime macro instruction.

e The time is set to 0 hr:0 min.:0 sec., Jan. 1, 1900 when the
system is delivered to a user. The user is responsible for
setting it correctly using the stime macro instruction.

@ A leap year is taken into consideration only when the days in a

year can be divided by 4 without a remainder, since the
H-S10/2a.2aE is not provided with the calendar feature.

- 76 -

4 MACRO INSTRUCTION

4.4 How to Use Macro Instructions
B RLEAS (release)

The RLEAS macro instruction changes the state of a task from
dormant to idle. All tasks other than the initial task (task number
1) are in dormant state (task execution inhibited) when the CPU
power supply is turned on. As a result, CPU cannot perform
processing.)

Generally, the initial task (started automatically by CPMS when
the CPU power supply is turned on) makes all other tasks
constructing the system enter idle state (task execution allowed).

[Example]
Initial task
Y
Repeated as much as
the number of tasks.
RLEAS

B QUEUE (queue)

The QUEUE macro instruction starts a task that is in idle

state
(task execution allowed).

Ex 1
[Example] Task that issued the
QUEUE macro instruction Task to be started
Y Y
QUEUE i
A VAN

@ If the task to be started is in dormant state (task execution
inhibited), the task is not started.

- 77 -

4 MACRO INSTRUCTION

Bl ABORT (abort)

The ABORT macro instruction makes a task enter dormant state
(task execution inhibited). If the task to be aborted by the macro
instruction 1is being executed, the task is forcibly terminated and
made to enter dormant state.

[Example]

Task that issued the
ABORT macro instruction Task being executed

€ Forcibly terminated
ABORT | .— °

I DELAY (delay)

The DELAY macro instruction interrupts the task, which issued the
DELAY macro instruction, and restarts it after the specified time.

[Example]

Task which issued
the DELAY macro

DELAY

Interrupt

Restart

- 178 -

4 MACRO INSTRUCTION

B TIMER (timer)

The TIMER macro instruction starts the specified task when the
specified time elapses, then repeats starting the task in the

specified cycle. In other words, this macro instruction starts a
task periodically.

[Example]
Task which issued the Task to be restarted
TIMER macro instruction periodically
Y ‘(//,/‘—— Started periodically
TIMER
AN

B CTIME (cancel time)

The CTIME macro instruction cancels a request which was issued by
a TIMER macro for periodically starting a task. After the CTIME

macro instruction is issued, the task which has been periodically
started is no longer started.

[Example]
Task which issued the ><
CTIME macro instruction Task which has been
Y Cancel w/'started periodically.
\4
CTIME
A A

- 179 -

4 MACRO INSTRUCTION
s

Il CHAP (cnange priority level)

The CHAP macro instruction temporarily modifies the priority
level of the specified task. The priority level of a task is used
to determine the execution order of the task. If an attempt is made
to start two tasks at the same time, the task which has the higher
priority level is executed first.

[Example]
Task (level 2) which issued .
the CHAP macro instruction Specified task
A Y (Level 3 is modified
to level 1.)
CHAP
QUEUE
Interrupt L

Restart Q""’/—_—_

In the above example, the level of the specified task is raised
higher than the level of the local task and the specified task is
started by a QUEUE macro instruction, so that the specified task is
executed while the local task is made to wait.

B CHMOD (change mode)

The CHMOD macro instruction modifies the contents of state
register. The state register stores a conditions code (indicates

overflow, zero, or negative) or an interrupt mask level (there are
8 levels). By rewriting the interrupt task, interrupt with the
specified mask level or less can be inhibited. This operation is
useful to execute a job prior to hardware.

Hardware interrupts are in the following levels:

Low priority Level 1 : P coil
Level 1 : S mode termination
Level 2 : Timer

High priority Level 3 : Remote I/O

- 80 -

4 MACRO INSTRUCTION

B SFACT (set factor)
B GFACT (get factor)

The SFACT macro instruction sets the start cause (factor) of the
specified task. The GFACT macro instruction fetches the set factor.
A factor is used to determine why a task is started and to choose
processing allocated to the factor.

[Example]
Task 1 Task 2
Y Y
I |
Route 1 Route 2
| | The GFACT macro
instruction fetches
| SFACT SFACT GFACT [the factor.
No factor
|
Route 1 factor Route 2 factor
Route 1 Route 2
QUEUE processing processing
[Example]
Once started, the
Task 1 task fetches the
as FACT to determine
Y why the task is
Task 3 started.
QUEUE W Y
A GFACT
Task 2 Start
Y
FACT=0 Processing depending
QUEUE on the FACT
: \i’ \i’ /
PaN

Task 3 uses a GFACT macro instruction to determine the

i The task t
task which started task 3 (task 1 or task 2). In other e task mus

check the
words, if the FACT used when task 1 starts task 3 is FACT again
different from the FACT used when task 2 starts task 3, |before it
task 3 checks the FACT whether task 1 or task 2 has terminates.

started task 3.

- 81 -

4 MACRO INSTRUCTION

B USPCHK (user stack pointer check)

The USPCHK macro instruction checks whether the local task is
using the stack area more than the size specified by the local
task. When a task uses an USPCHK macro instruction at the task's
deepest section, the stack area size required by the task can be
estimated.

[Example]

Assume that a task has the following program configuration:

Task main SUBL . SUB2

SUB3 SUB4

!

Deepest section

In the above example, SUB4 is the deepest section of the task.
The stack use state can be obtained by issuing an USPCHK macro
instruction in SUB4. However, i1f a lot of local area is used by
another route, an USPCHK macro instruction must be used in the
deepest section of that route.

@ Local area: Program work area reserved in the stack area

- 82 -

4 MACRO INSTRUCTION
e

B STIME (set time) (Execution of this macro instruction requires
memory with a clock.)

The STIME macro instruction sets the real time specified by

parameters in memory with a clock that manages the time of day.
That is, this macro instruction sets or updates the absolute time.

The following parameters are available:

+ Time in seconds

« Month, day
. Year] STIME

- Day of the week N

Intra-module
memory with
a clock

B GTIME (get time) (Execution of this macro instruction requires
memory with a clock.)

The GTIME macro instruction stores the time of day, managed in
memory with a clock, in the area specified by a parameter. That is,
this macro instruction fetches the real time.

After execution, the following values are stored:

+ Time in seconds
* Month, day

* Year

* Day of the week

GTIME

Specified
area

Intra-module
memory with
a clock

- 83 -

4 MACRO INSTRUCTION

. WAKE (wakeup task) (Execution of this macro instruction
requires memory with a clock.)

The WAKE macro instruction registers a task having the task number
specified by a parameter in a system table, then places the task in
the scheduled state. The task in the scheduled state will be
started at the time of day specified by parameters.

When cyclic start is specified, the task is started each time the
specified cycle time elapses.

Intra-module
memory with
a clock.

>~
7

Wakeup macro instruction
(WAKE or CWAKE)

User
task

B CWAKE (cancel wakeup task) (Execution of this macro
instruction requires memory with a clock.)

The CWAKE macro instruction deletes all tasks identified by the
task number, and also deletes start factor parameters from the table
in which they were registered by a WAKE macro instruction. That is,
this macro instruction cancels a WAKE macro ilnstruction.

- 84 -

B RSERV (reserve)

In task-shared memory,

area specified by a parameter.

Area occupied
by user task 1

/

4 MACRO INSTRUCTION

Area occupied
by user task 2

N

Memory az;f

]

RSERV

User
task 1

. FREE (free)

User
task 2

RSERV / X\RSERV

User
task 3

the RSERV macro instruction reserves the

This area is
already occupied
by user task 2.
Therefore, user
task 3 is made to
wait until user
task 2 releases
the area with a
FREE macro
instruction.

The FREE macro instruction releases memory reserved by an RSERV

macro instruction.

That 1is,

effect of an RSERV macro instruction.

- 85 -

this macro instruction cancels the

4 MACRO INSTRUCTION

. MVMEM (move memory)

The MVMEM macro instruction copies the data specified by a
parameter to the specified area. This macro instruction enables
data to be written to protected memory (excluding the program area
for the operating system). :

Y

- 86 -

5 APPENDIX

5 APPENDIX

APPENDIX 1 E)E(.IEIEENSDED MEMORY ALLOCATION IN THE H-S10/2 «

/100000 /200000 /300000 /400000

| 1 T T 1 T T T T T T T
Extended memory 1 | Extended memory 2 | Extended memory 3 | Extended memory 4
(1M bytes) (1M bytes) (1M bytes) (1M bytes)

1 1 1 1 1 | i I | 1 1 |

Supported only for the
2aE, 2aH, and 2 aHE

Extended memory 1

/100000 /110000 /120000 /130000 /140000 /160000 /170000) ‘ /1FFFFF

pi Z yAa
I I . LI LI T I L Li I I

Bxcended HT-FLOW CV-NET @ [prhernet FA-BASIC*

| L | 1 I] 1 l | | |

Extended memories 2 to 4

/200000 : /4FFFFF

C‘k*

* The user can allocate the FA-BASIC area within the range /110000
to /1FFFFF.

** The user can allocate the C area within the range /110000 to
/4FFFFF.

- 88 -

5 APPENDIX

APPENDIX 2 PROTECT KEYSWITCH

(1) Purpose

The protect keyswitch protects the system area from being
destroyed inadvertently by user tasks in C or FA-BASIC. The protect
keyswitch cannot be used in arithmetic functions (including user
arithmetic functions).

(2) Effective range of memory protection

® . ® 2¢E, 20H, 2aHf

/000000 08 ROM /OOOOOO ,ffléfiééifj;!

I - G
-, //é

~ register - reglster

i : 777

/060000 /06000
/080000 /08000
/0A0000 /0A0000
| PI/O memory _| | PI/O memory _|
(bits) (bits)
/0D0000 /0D0000
| Reserved for | | Reserved for |
the system the system
/0E0QOO[PI/O memory /0E00Q0O[PI/O memory
(ds) {)
/OF0000 it } /O0F000 }
/100000 - /100000 :

: Memory is protected for a read and write.

: Memory is protected for a write, but not for a read.
Qg : The LPET, DW register, and TUC setting are included.
: The UFET, PRET, and TUC values are included.

(3) Protect errors (indicated by the PROT ERR indicator)

When the protect keyswitch is turned on but a user task attempts
to access a protected area, a protect error occurs. In this case,
only the user task is aborted.

When the user task is registered in the user arithmetic function

table (UFET) rather than the program edition table (PRET), however,
protection is disabled.

- 89 -

5 APPENDIX

APPENDIX 3 DHP INFORMATION

DHP code (D7.L)

No Function Remarks
NO . |parameteri|parameter2|parameter3
1 |QUEUE 01 TN - - TN: Task number /
2 |Task exit 02 | ETN - - ETN: End task number
3 |ABORT 03 TN - -
4 |RLEAS 04 TN - -
5 |SFACT 05 TN - - :
6 |GFACT 06 | CTNO - - CTNO: Number of the macro-issuing taski
7 |DELAY 07 | CTNOC - -
8 |TIMER 08 TN - -
9 |CTIME 09 TN - -
10 [CHMOD 0A | CTNO - -
11 [CHAP 0B | LEVEL - - LEVEL: New level
12 |Initial task start { OC TN - -
13 |Task restart 0D ™ - - o
14 |CBMS initialization | OE | + 00 - - "
15 |Idle oF 00 - - n
16 |BCAN 10] T~ - - z
17 |USPCHK 11 [cTNO - - &
18 |STIME 12 | CTNO - - ol
19 |GTIME 13 | CTNO - - 1
20 |WAKE 14 TN ~ - | a
21 |CWAKE 15| TN - - Bl &
22 |RSERV 16 | CTNO - - ;" g
23 |FREE 17 | CTNO - - & o
24 |WATE 18 | cINO | - - A< S
25 |POST 19 | CTNO - - 3 3
26 |DEFCD 1A | CTNO - - 8 § 3
27 |ENQ 1B | CTNO - - o 5 i
28 |DEQ 1C | CTNO - - g g &
29 |sUsP 1D| TN - - i <
30 [RSUM 1B TN - - _{(_
31 |Parameter error | 1F | CTNO EC EC: Macro parameter error code
32 |Error interrupt |20 ™ SW IN = 0 indicates a system failure
ISW: Interrupt factor
33 Extended board 21 This function is incorporated in the operating
interrupt system that supports the extended board.
34 |MVMEN 00 | CTNO - -
COIL=0:P coil interrupt
COIL=1:N coil interrupt
35 |Coil interrupt | 22 | COIL CNO COIL=2:Counter interrupt
COIL=3:0Operation instruction interrupt
CNO=Coil number
K = 1: SEQ timer
36 |Timer interrupt |23 K . - - K = 2: T.U timer
K = 3: Task timer interrupt
37 |RI/C termination | 24 00 - -
38 |SEND interrupt | 25 | CSPN - - CSPN: Number of terminated S-mode program

5 APPENDIX

APPENDIX 4 MACRO INSTRUCTIONS AND THEIR EXECUTION TIMES

@)
2 g
= 0
n g
nn
]
Vwuo
O gy
8- ©
mtm
-
O T~
Moo
88
T A
i
- -~ 0
e
0 -
(O]
§5%
T Y
o w
0] 0
S O-H
0.C P
2 L3
2 4 0
00 X
— T 0
Vg
bum
g~
0w
FENNoNNe
n oo
P
— 073
Q
nwH n
2o
—H w0 e
D oYy-d
Q
= 1)
O Y
DEYq
S— g
U Vo
U n G-~
Xgowp
O O0OwWwou
0D =G
S 60 P
“HY R
0 .Q -~

POST 10U OB BILNOXTD AOPPeT

TPOAAICI8 J8AT3 BT J5ed oul

*x10x18 AjTaed ou ST 9I9YL ‘PONSST ApeaaTe sem (WT)DIZ|0°090898 |Z2°209¢0¢€ |7°9¢99z7¢ TTIUN PONSST ST ¥H SwTr] oyl word | ¢z
TTICIS ISTTT 5T SU3 TN PotesT
‘pejae3s J0u IR SYSR] I9Yl0 CATTedTTLAD jou Ing ST Kep Jo swr] poTITosds Syl Je ysel
‘Aep Jo suTl poriroads Syl je polIels ST Sl 9YL |8 LZS 98T 8 LET o3 re3s 03 JANIIOIUT ue Swrl oyl woid |zz
}Se] DUrNsSs [-0J0eW oyl 03 suinjox
[OI3U0OD TIJUN PONSST ST UOTIPNIISUT
I=ONM |8°Z9C 6°T6 9°89 oxoeu NHAWAW UR SWT] 33 WOIJ Z
“3Se3 DULNSS-OJoRW oyl 03 Suinjex
DOSBITRI g 03 $IVINOSSI I0F [OXI3UOD TIJUN PONSST ST UOTIONIAISUT
BuriTem syse] OU 9JIe 9I9YyL 'poTdndoo ST 9sed auo ATuQ {§°0LE 9'62T L°'96 OIDRW HHYd © SWT] oyl woxd |og
‘poseaox o 03 3Se3 DUInesI-OJd0BWl oyl 03 suinjox
S®DINOSDI I0F HPUTITeM SHYSel] ISYJ0 Ou SI' SIJYL "pPoOnsst TOI3UOD TTIUM PONSST ST UCTIONIISUT
9 ued AYHASYH .>Hco osep suo 03 sotTdde as3ouweied SYL[9°66Z P €0T Z° L. OIDRW AYHASH Ue wEHu 92Uyl woxd |61
Y53 DUINSSI-OJI0eW oyl O3 suinjox
[OIJUOD TTIUN PSNSST ST UOTIDNIJISUT
*ATiusIInD paINpPsyds ST Sl 9uo ATuQ |8 862 S 06 9°L9 OJOBW HMVMD B SWI] 9yl woxd |87
3Se3 DbUINsSSI-OJdoeu oyl 03 suinjedx
*(Bbutratem sT 3se]l ou) AJdwe ST gyv SUL [OI3UOD TTIUN PONSST ST UOCTIONIISUT
‘jueosaxd ST Yse3 HurnssI-oxorw oyl ATUO Q0 88E L SET £ I0T oJpRW HMVM B SWI] 8yl woxd |/,
3Se] DUuInssST-oadew o] 03 SuIniax
[OX3uoD TIjun PaNSST ST UOTIDNIJISUT
rjussaxd ST s3] BUINSST-0IQeW Syl ATUO |6°602 7 EL 8° 7S oIDRU HWILO B SWT] SYl Wwoxd [9T
HSB3 DUlNss-0iD0ell oyg 03 suinjod
fox3uoD TTIUN PONSST ST UOTIONIISUT
‘utefe peTnpsyds 30U ST ¥Se] SYL (G LZS G F8T L LET OIDBW HWILS U SWTI] Y] WOIH 16T
{Se3 DULNSS[-OJXDPW oyd 03 suinjox
TOX3uod TTIAUN PONSST ST UOTIONIISUT
‘juesoxd ST ysel HPurtnsst-oadoew a9yl ATuols'gee S €8 €°29 OIDBW MHOASH © SwWijl 9yYyj woxd |yl
3523 DUInNSsI-oxoell 9Ugj 03 suinjog
[OIJUOD TTIJUN PONSST ST UOTIONIISUT
"93e]ls JURWIOP B UT ST 3se3 3896Ie] SYL|Z°9%C 1°98 £°99 OZl®'W SVHTY Ue SWT] Yl Woid | €T
ISe] DUINSSTI-0JoeW oyl O3 Suinjox
*Yse] jJ9bael 9Yl 03 PONsSST ApesaTr Sem SYATH TOI3UOD TTIUR PONSST ST UOTIONIISUT
'Sy Se] JI9YUJ0 OU SIB BISYL [0 °ZZ¥ 9LV Z'0TL oIDeW _JVHD ® SWIl oYl Woxd |zT
i {523 DUInssi-o0ioell 944 03 suingod
TOI3UO0D TTIUN PONSST ST UOTIONIISUT
‘juesexd ST ¥sel BurnssT-oxdeuw oyl ATuo [£°00Z 2 0L v°ZS ozpew JOWHD ® swrj 8yl woxd | TT
}Se] DUTNSST-0J0BW 99Ul 03 suanjol -
[OIJU0D TTIIUN PONSST ST UOTIONIISUT
TATIUSIIND PINPIYDS ST se] suo ATUQ |€°LFT G°98 9°%9 oIDRW HWILD ® SWTI3 9Yj woxd | 0T
“Sel Sl 03 PISNSST ApesI[e SPM SVATH TdwTl 3ISITI 9Y3
‘peTnpayss ST }sSel auo ATuQ s3Iels 3sel 9yl TIiun paleisusb
‘pojeIsusb ST AANIISIUT UR USYM STPT ST ¥S®3 OYL |6°9S¥ 8°6ST €°61T ST 1dnIIsJuTl JoWTI]l © SWT] oYl woxd | 6
YSB] DUlNSSi-0dotll oyl 05 suinjox
[oI3uUoD TI3Un PonssST ST UOTIONIISUT
rjussoad ST yse)l SurnssT-oidew 8yl ATUQ [6°ZT¥ il A AN 8°L0T OIDRW JYHWIL © PWIJ) oyl woxd | g
“PojeiIsUSb ST JdniIojur ue ueoym T§3Xe]1501 sed oyl [rJun pojersusb
STPT ST 3Se] oyl °pojIeisel ST peleTop Hurleq 3sel oyl |8°GLb 7°99T Z°921 ST 3dnII9]UT JISWTI) © SWTJ oYl WOxJ | /
"SJP1E§ O|Pt UP SdodUo jseq
9Y3 TTJun pomnsSsST ST UOTIONIISUT
‘jussaxd ST ¥se] BurnssI-oxdew syl ATUuo |G- 09¢ 1°921T 1°76 0JI0BW AYTAQ B SWI] oYl WoXd | 9
JS®3 DUINSS[-OJXDPW oyl 03 suitjox
TOXJUOD TTIJUN PONSST ST UOTIONIISUT
Poyo3ey ST 8 = 30e3 usym STqedTTddv [€-Seg £°28 ¥-19 OIDoRW JOVAD ® DWT] Y] WOIJ | §
Se3Y DUINSS1-0I0CW @yg 03 Suxtngox
[OI3UOD TTJUN PSNSST ST UOTIONIISUT
‘jusssad ST yse] Hurnsst-oxoeuw syl ATuo |Z°8¥7Z 8°98 8179 OID®'W JLDVJAS Ue SuTl syl woxd |
3S8] DbULnSSTI-OdoeuW oyl 03 suirjox
[OIJUCD TTIUN PRUSST ST UOTIONIISUT
‘3Se3 39bie] SY3l O3 poussT Apeox[e Sem SYHATY |8°Z92 6°16 9°89 OZdeW IMOdY Ue SWT] 9U3] WoXd | ¢
S3e1S olbt oul
*@OouUo uryl SI93UD }Sel oYL TIJUN SIJRUTWIS]
SIOUW PI3IRIS JO0U ST pue ATTRWIOU S93BUTWID] Ysel SUL |§'§eT G'E¥ G Z¢ UOTIONIJSUT OJIDRW B SWL) 9yl Woxd | 2
“3Se] bUrNss-oioeu ‘S3aeds
syl ueys A3txotad I8UDBTIY e sey 3sej 1961e] oYL }sel 9yl TIJUN PONSST ST UOTIONIISUT
‘3se3 3196Ie3 9y3 O3 PONssST ApeeITe SeM SYETH |6°ZhP 6°%ST 9°'GTT OoI0PW HNAAQ © SWT] 9Yj woxd | T
(3ooyd xojowrered Y3lTM ‘dHQ INOYITM) SHIPWSY (syoz | (svymrz Amivumnm UOTITPUOD *ON

91

	Cover
	Copyright
	LIMITED WARRANTY
	SAFETY AWARENESS SUMMARY
	"RUN/STOP" SWITCH CAUTION
	PREFACE
	CONTENTS
	１ GENERAL DESCRIPTION
	1.1 CPMS
	1.2 Hardware
	1.3 Software
	1.3.1 Programs
	1.3.2 Loading programs
	1.3.3 Checking programs

	1.4 Relationship between 2a OS and CPMS

	２ TASK MANAGEMENT
	2.1 Task Configuration
	2.1.1 Operations
	2.1.2 Linkage between CPMS and tasks
	2.1.3 Task levels
	2.1.4 Subroutines
	2.1.5 Data tables

	2.2 Task States
	2.3 Task operations

	３ SYSTEM MANAGEMENT
	3.1 Initiating the System
	3.2 Error Handling
	3.3 Installing Subroutines
	3.3.1 Types
	3.3.2 Registration

	3.4 Error Log
	3.5 DHP
	3.6 Floating-Point Operation
	3.6.1 Notes on use of floating-point operations
	3.6.2 Error log for floating-point operation

	４ MACRO INSTRUCTION
	4.1 Macro Instruction
	4.1.1 Macro library
	4.1.2 General rules
	4.1.3 Checking parameters

	4.2 Types
	4.2.1 rleas
	4.2.2 queue
	4.2.3 abort
	4.2.4 delay
	4.2.5 timer
	4.2.6 ctime
	4.2.7 chap
	4.2.8 chmod
	4.2.9 sfact
	4.2.10 gfact
	4.2.11 uspchk
	4.2.12 stime
	4.2.13 gtime
	4.2.14 wake
	4.2.15 cwake
	4.2.16 rserv
	4.2.17 free
	4.2.18 mvmem

	4.3 Supplement
	4.3.1 Relationship between rserv and free
	4.3.2 Relationship between wake and cwake
	4.3.3 Relationship between stime and gtime

	4.4 How to Use Macro Instructions

	５ APPENDIX
	APPENDIX1 EXTENDED MEMORY ALLOCATION IN THE H-S10/2a SERIES
	APPENDIX2 PROTECT KEYSWITCH
	APPENDIX3 DHP INFORMATION
	APPENDIX4 MACRO INSTRUCTIONS AND THEIR EXECUTION TIMES

