

Software Manual

SEE-3-122(A)

Programming

HI-FLOW for Windows®

Software Manual

Programming

First Edition, May 2020, SEE-3-122 (A)

All Rights Reserved, Copyright © 2020, Hitachi, Ltd.

The contents of this publication may be revised without prior notice.

No part of this publication may be reproduced in any form or by any means without permission in
writing from the publisher.

Printed in Japan.

IC (FL-MW2007)

S-1

 WARNING

NOTICE

SAFETY PRECAUTIONS

 Read this manual thoroughly and follow all the safety precautions and instructions given in this

manual before operations such as system configuration and program creation.
 Keep this manual handy so that you can refer to it any time you want.
 If you have any question concerning any part of this manual, contact your nearest Hitachi branch

office or service engineer.
 Hitachi will not be responsible for any accident or failure resulting from your operation in any

manner not described in this manual.
 Hitachi will not be responsible for any accident or failure resulting from modification of software

provided by Hitachi.
 Hitachi will not be responsible for reliability of software not provided by Hitachi.
 Make it a rule to back up every file. Any trouble on the file unit, power failure during file access

or incorrect operation may destroy some of the files you have stored. To prevent data destruction
and loss, make file backup a routine task.

 Furnish protective circuits externally and make a system design in a way that ensures safety in
system operations and provides adequate safeguards to prevent personal injury and death and
serious property damage even if the product should become faulty or malfunction or if an
employed program is defective.

 If an emergency stop circuit, interlock circuit, or similar circuit is to be formulated, it must be
positioned external to the programmable controller. If you do not observe this precaution,
equipment damage or accident may occur when this programmable controller becomes defective.

 Before changing the program, generating a forced output, or performing the RUN, STOP, or like
procedure during an operation, thoroughly verify the safety because the use of an incorrect
procedure may cause equipment damage or other accident.

 This manual contains information on potential hazards that is intended as a guide for safe use of
this product. The potential hazards listed in the manual are divided into four hazard levels of
danger, warning, caution, and notice, according to the level of their severity. The following are
definitions of the safety labels containing the corresponding signal words DANGER,
WARNING, CAUTION, and NOTICE.

: This safety label identifies precautions that, if not heeded, will result in
death or serious injury.

: Identifies precautions that, if not heeded, could result in death or serious
injury.

: Identifies precautions that, if not heeded, could result in minor or moderate
injury.

: This safety label without a safety alert symbol identifies precautions that,
if not heeded, could result in property damage or loss not related to
personal injury.

Failure to observe any of the CAUTION and NOTICE statements used in this manual
could also lead to a serious consequence, depending on the situation in which this product is used.
Therefore, be sure to observe all of those statements without fail.

 DANGER

 CAUTION

S-2

The following are definitions of the phrases “serious injury,” “minor or moderate injury,” and
“property damage or loss not related to personal injury” used in the above definitions of the safety
labels.

Serious injury: Is an injury that requires hospitalization for medical treatment, has aftereffects,
and/or requires long-term follow-up care. Examples of serious injuries are as follows: vision loss,
burn (caused by dry heat or extreme cold), electric-shock injury, broken bone, poisoning, etc.

Minor or moderate injury: Is an injury that does not require either hospitalization for medical
treatment or long-term follow-up care. Examples of minor or moderate injuries are as follows: burn,
electric-shock injury, etc.

Property damage or loss not related to personal injury: Is a damage to or loss of personal
property. Examples of property damages or losses not related to personal injury are as follows:
damage to this product or other equipment or their breakdown, loss of useful data, etc.

The safety precautions stated in this manual are based on the general rules of safety applicable to
this product. These safety precautions are a necessary complement to the various safety measures
included in this product. Although they have been planned carefully, the safety precautions posted
on this product and in the manual do not cover every possible hazard. Common sense and caution
must be used when operating this product. For safe operation and maintenance of this product,
establish your own safety rules and regulations according to your unique needs. A variety of
industry standards are available to establish such safety rules and regulations.

S-3

NOTICE

 In the syntax that makes para start and merges at select end (as in the pattern
shown below), do not describe any syntax that makes para start again in the
middle of a subroute and merges at select end into the main route, not the
subroute. If a merging position is reached, the system will shut down only the
route having the same merging position. Therefore, non-merging subroutes
that are being executed will remain as they are.

[Description of operation]
 During execution of sub 1 to sub 3, if sub 3 reaches merge 2 before sub 1

and sub 2 reach merge 3, the execution points of sub 1 and sub 2 will not be
shut down.

(See page 4-28.)

 Do not describe any syntax that has differing non-synchronous processes

between branching and merging, and that has a non-synchronous route as a
merging route (as in the pattern shown below). If execution is attempted, a new
main route will not be started because the system judges that a subroute is
being executed.

 If a master reset specification is given at the start of a process, and bit-type

PI/O data is used, then the bit-type PI/O data may be zero-cleared.
(See page 4-35.)

Merge1

Merge3

Merge 2

Step A

Sub 1 Sub 2

Sub 3

S-4

Revision History

Revision No. History (revision details) Issue date Remarks

A First edition May 2020

i

PREFACE

HI-FLOW, a programming language for Hitachi Programmable Controllers, is a language that is
programmable in a flowchart form.
This manual describes instruction words designed to develop programs with HI-FLOW.

<Trademarks>
 Microsoft® and Windows® are either registered trademarks or trademarks of Microsoft

Corporation in the United States and/or other countries.

 Ethernet® is a registered trademark of Xerox Corp.

<Note for storage capacity calculations>

 Memory capacities and requirements, file sizes and storage requirements, etc. must be
calculated according to the formula 2n. The following examples show the results of such
calculations by 2n (to the right of the equals signs).
1 KB (kilobyte) = 1,024 bytes
1 MB (megabyte) = 1,048,576 bytes
1 GB (gigabyte) = 1,073,741,824 bytes
1 TB (terabyte) = 1,099,511,627,776 bytes

 As for disk capacities, they must be calculated using the formula 10n. Listed below are the
results of calculating the above example capacities using 10n in place of 2n.
1 KB (kilobyte) = 1,000 bytes
1 MB (megabyte) = 1,0002 bytes
1 GB (gigabyte) = 1,0003 bytes
1 TB (terabyte) = 1,0004 bytes

ii

CONTENTS

CHAPTER 1 COMPOSITION OF THE HI-FLOW PROGRAM 1-1

CHAPTER 2 HOW TO USE THIS MANUAL ... 2-1
2.1 Overview .. 2-1
2.2 Description of Syntax ... 2-2
2.3 Description of Applied Instructions ... 2-3

CHAPTER 3 PROCESS .. 3-1
3.1 What is a Process? .. 3-1
3.2 Program .. 3-6
3.3 Process Information ... 3-20

CHAPTER 4 DESCRIPTION OF SYNTAX .. 4-1
4.1 Process Start and Process End ... 4-1
4.2 Route Start and Route End ... 4-5
4.3 Wait .. 4-6
4.4 Boxes .. 4-8
4.5 Control Box .. 4-15
4.6 Repeat Start and Repeat End .. 4-19
4.7 If ... 4-20
4.8 Jump ... 4-22
4.9 Escape .. 4-23
4.10 Para Start and Para End .. 4-24
4.11 Para Start and Select End ... 4-25
4.12 Select, Cell Wait, and Select End .. 4-29
4.13 Multi-entry ... 4-30
4.14 Call ... 4-31
4.15 Function ... 4-32
4.16 Wait with Precondition .. 4-32
4.17 Non-synchronous Process End ... 4-33

CHAPTER 5 APPLIED INSTRUCTIONS ... 5-1
5.1 Overview .. 5-1
5.2 How to Use It ... 5-1
5.3 Parameters .. 5-1
5.4 Type Conversion in Operations ... 5-3
5.5 System Error Flags ... 5-4
5.6 Function Description .. 5-5

SUPPLEMENT A FLOW OF THE HI-FLOW PROGRAM Z-1

SUPPLEMENT B PCs MEMORY ... Z-2

SUPPLEMENT C ONLINE MODE .. Z-3

SUPPLEMENT D PROGRESS CHECK .. Z-7

SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD Z-9

1. COMPOSITION OF THE HI-FLOW PROGRAM

1-1

CHAPTER 1 COMPOSITION OF THE HI-FLOW PROGRAM

This manual describes the standards for, and the contents of, the new HI-FLOW language. Please
refer to the manual as necessary when considering a program. A user-created HI-FLOW program
consists of the following elements:

Step numbers 1 to 999

Symbol figures: 19 types

Labels: B1 to B255

Reserved words: 18 types

Constants: 3 types

Variables: 5 types

Operators: 15 types

Step comments: up to 70 characters

Free labels: up to 6 characters

Free comments: up to 70 characters

Name: up to 16 characters

Comments: up to 132 characters

HI-FLOW program

Processes

Program

Route

Steps

Syntax structure

21 types

Vertical
(Y-axis)
1 to 255
up to 999

Horizontal
(X-axis)
1 to 31
No limit on
the number
of existing
routes

No limit on
the number
of routes

Processes 0 to 255

Configurable
for each
process

Process information

This Page Intentionally Left Blank

2. HOW TO USE THIS MANUAL

2-1

CHAPTER 2 HOW TO USE THIS MANUAL

2.1 Overview

This manual is organized to cover the elements specified in Chapter 1. Below is a table of the
chapters, sections, and pages corresponding to the respective items.

Item
Corresponding

chapter or section
Page

Process

Program
• Routes
• Steps
• Step number
• Symbol figures
• Labels
• Syntax structures
• Reserved words
• Constants
• Variables
• Operators
• Step comments
• Free labels
• Free comments

Process information
• Names
• Comments

Chapter 3

Section 3.2

Section 3.3

3-1

3-6
3-6

3-11
3-12
3-12
3-15
3-15
3-16
3-16
3-16
3-18
3-18
3-19
3-19

3-20
3-20
3-20

2. HOW TO USE THIS MANUAL

2-2

2.2 Description of Syntax
This manual describes the syntax of the HI-FLOW programming language with regard to each
available function, following “outline information.” Below is a table of the chapters, sections,
and pages corresponding to the respective functions.

Item Figure
Corresponding

chapter or section
Page

Description of syntax Chapter 4 4-1
Process start and
process end
• STP
• RST
• CLR
• ACT

 Section 4.1 4-1

4-2
4-3
4-3
4-3

Route start and
route end

 Section 4.2 4-5

Wait
• Conditional expression
• Timers
• Output bits
• Wait timer

 Section 4.3 4-6
4-6
4-6
4-6
4-6

Boxes
• Assignment expression
• Special assignment expression
• ON statements
• OFF statements
• Parallel timers
• TUP
• TRS

Section 4.4 4-8
4-8
4-9

4-12
4-12
4-13
4-14
4-14

Control box
• ACT
• RST
• STP
• CLR

 Section 4.5 4-15
4-15
4-16
4-16
4-17

Repeat start and
repeat end

 Section 4.6 4-19

If Section 4.7 4-20
Jump Section 4.8 4-22
Escape Section 4.9 4-23
Para start and
para end

 Section 4.10 4-24

Para start and
select end

 Section 4.11 4-25

Select,
cell wait, and
select end

 Section 4.12 4-29

Multi-entry Section 4.13 4-30
Call Section 4.14 4-31
Function Section 4.15 4-32
Wait with precondition Section 4.16 4-32
Non-synchronous process end Section 4.17 4-33

*

2. HOW TO USE THIS MANUAL

2-3

2.3 Description of Applied Instructions
HI-FLOW supports applied instructions that are functionally similar to the instructions used in
ladder diagrams. Below is a table of items corresponding to the functions of the applied
instructions.

Category Type Symbol Function overview Page

Arithmetic
operation

instructions

Addition ADD S+D  R 5-6
Subtraction SUB S-D  R 5-7
+1 INC S+1  S 5-8
-1 DEC S-1  S 5-9
Multiplication MUL S*D  R 5-10
Division DIV S/D  R 5-11
Remainder MOD Remainder of S/D  R 5-12
Scale
conversion

SCL S*D1/D2  R 5-13

Logical
operation

instructions

Logical
product

AND S AND D  R 5-14

Logical sum OR S OR D  R 5-15
Exclusive OR EOR S EOR D  R 5-16
Negation NOT NOT S  R 5-17

Relational
operation

instructions

= EQU Truth/falsehood of S = D  R 5-18
<> NEQ Truth/falsehood of S<>D  R 5-19
> GT Truth/falsehood of S>D  R 5-20
>= GE Truth/falsehood of S>=D  R 5-21
< LT Truth/falsehood of S<D  R 5-22
<= LE Truth/falsehood of S<=D  R 5-23
Test TST Code S  R 5-24

Data
transfer

instructions

Transfer MOV S  D 5-25
Collective
transfer

MOM S~Sn  D~Dn 5-26

Replacement EXC S  D 5-27
FIFO write PSH S  D (FIFO table) 5-28
FIFO read POP S (FIFO table)  D 5-29
Address set AST Address S  D 5-30
Search SCH S =D (n)  Set n to R 5-31

Data
conversion
instructions

BIN-BCD BTD BIN  BCD
S R

5-32

BCD-BIN DTB BCD  BIN
S R

5-33

BIN-7SEG SEG BIN  7-segment
S R

5-34

2. HOW TO USE THIS MANUAL

2-4

Category Type Symbol Function overview Page

Data
conversion
instructions

BIN-ASC ASP BIN  ASCII (pack and unpack)
S (R, R+1), (R, R+1, R+2, R+3)

5-35
ASU 5-36

ASC-BIN APB ASCII (pack and unpack)  BIN
(S, S+1), (S, S+1, S+2, S+3) R

5-37
AUB 5-38

Absolute
value

ABS | S |  R 5-39

+/- NEG -S  R 5-40
Decode DCD S 2^11~2^15  Turn ON the 2^n bit of R 5-41
Encode ECD First ON bit number of S  2^11~2^15 of R 5-42

Shift
instructions

Logic right-
shift

LSR S Logic right-shift D  R 5-43

Logic left-
shift

LSL S Logic left-shift D  R 5-44

Arithmetic
right-shift

ASR S Arithmetic right-shift D  R 5-45

Arithmetic
left-shift

ASL S Arithmetic left-shift D  R 5-46

Rotation
instructions

CW rotation ROR S CW rotation R 5-47
CCW rotation ROL S CCW rotation R 5-48

Function
processing
instructions

Limiter LIM 5-49
Dead band BND 5-50
Dead zone ZON 5-51
Square root ROT 5-52
Maximum
value

MAX 5-53

Minimum
value

MIN 5-54

Special
instructions

Clear XCLR
YCLR
GCLR
RCLR
KCLR
TCLR
UCLR
CCLR
VCLR
ECLR
FCLR
JCLR
QCLR
HHCLR

 5-55

3. PROCESS

3-1

CHAPTER 3 PROCESS

3.1 What is a Process?
Something enclosed by a process start () and a process end () or non-synchronous
process end () is called a process. It is the largest component of a HI-FLOW program. A
process consists of a program composed of at least one route, along with process information
about information attached to the process. Create one or more processes for each objective
and function and control the target equipment.
Processes are identified by P + process number (a decimal) (P0 through P255).
P0 is called the initial process. Its startup is reserved from the execution controller of HI-
FLOW (HI-FLOW OS) when the PCs is turned on. With the startup from the initial process as
the turning point, you can control processes P1 through P255.
If a process is being executed, a specified PI/O register will be turned on. Its status can be
monitored. (See “4.7.7 Laying out the system bits” of “S10VE Software Manual Operation
HI-FLOW for Windows® (manual number SEE-3-132)” of standards Q0F00 through Q0FFF.)

HI-FLOW OS

Q0F00 ON when the
initial process is
executed

Startup reserved at power-up

P0 (process 0)

Q0F02 ON
when executed

Q0F0A ON
when executed

P2

P10

Started

Started

Q0F03 ON
when executed

Q0F04 ON
when executed

QF005 ON
when executed

P3

P4

P5

Called

Called

Q0FFF ON
when executed

P255

Started Started

3. PROCESS

3-2

Process statuses
The PCs can be in nine different statuses.

State Description

Inexistent The HI-FLOW process does not exist.
Executable The HI-FLOW process exists and can operate if started.
Under execution The HI-FLOW process was ACT-started from another process and is

being executed.
Standstill The HI-FLOW process has been stopped at a point in the process because

some conditions hold. The information and PI/O value of the process are
held. For the time elapsed on the timer, specify a holding operation and
continuation of measurement.

Being reset The HI-FLOW process is stopped at process start because some
conditions hold. Process information is initialized. The PI/O value is
held. For the time elapsed on the timer, specify upload and reset.

Clear This clears the bit-type PI/O (ON statement and parallel timer) used in
the process to 0 because some conditions hold while the HI-FLOW
process is stopped, reset, call stopped, or call reset.

Being called The HI-FLOW process is executed as subroutine-called from another
process.

Call stopped The HI-FLOW process is stopped at a point in the process because some
conditions hold while called. The information and PI/O value of the
process are held. For the time elapsed on the timer, specify holding and
continuation of measurement.

Call being reset The HI-FLOW process is stopped at process start because some
conditions hold while called. Process information is initialized. The
PI/O value is held. For the time elapsed on the timer, specify upload and
reset.

While being stopped or reset, the status transits in response to one event where conditions
hold. When the conditions no longer hold, the status will remain unchanged. But, clearing is
conducted every time the conditions hold.

3. PROCESS

3-3

Process status transition
A process can come in nine different statuses. The chart below shows what (the numbers in
the chart) makes the status transit and how (the arrows in the chart).

Relational chart of status transition

Inexistent

Deleted

Executable

Created

Being
executed

Being
called

Being
stopped

Call
being
stopped

Being
reset

Call
being
reset

PI/O
cleared

PI/O
cleared

[1] [20] [2] [12] [11]

[21]

[4]

[3]

[14]

[13]

[9] [19]

[8] [18] [7] [6] [5] [17] [16] [15]

[10]

Subprocess Main process

3. PROCESS

3-4

[1] Control box ACT ()
[2] Escape ()
[3] Process start STP (), control box STP ()
[4] Process start ACT (), control box ACT ()
[5] Process start RST (), control box RST ()
[6] Process start ACT (), control box ACT ()
[7]Process start RST (), control box RST ()
[8] Process start CLR (), control box CLR ()
[9] Process start CLR (), control box CLR ()
[10] Process call ()
[11] Process call ()
[12] Process end (), escape ()

Control box RST () to the source process
Process start RST () to the source process

[13] Process start STP ()
Control box STP () to the source process
Process start STP () to the source process

[14] Process start ACT ()
Control box ACT () to the source process
Process start ACT () to the source process

[15] Process start RST ()
[16] Process start ACT ()
[17] Process start RST ()
[18] Process start CLR ()
[19] Process start CLR ()
[20] Control box RST () to the source process

Process start RST () to the source process
[21] Control box RST () to the source process

Process start RST () to the source process

When a process transits to being executed or being called, there are two startup specifications:
master reset and zone. If nothing is specified, zone startup will occur.
When a process shifts to process end (), escape (), or an executable state, the selection of a
PI/O value (hold or clear to 0) and the selection of a time elapsed on the timer
(upload/reset/continuation of measurement) will be conducted in the same way it is started up.

3. PROCESS

3-5

Status of PCs key switches and processes
Here is how the status of a process on the PCs changes in response to the PCs key switches
and a blackout and power restoration of the PCs. HI-FLOW does not distinguish between
the RUN and SIM RUN statuses of the PCs and follows the operation of the PCs.
[a] Blackout and power restoration of the PCs (resetting the PCs key switches)

When the PCs undergoes a blackout or power restoration, all processes on the PCs
become initialized.
Contents of the initialization
 The process status is made executable.
 The timer is stopped.
 The PI/O is turned off. (The DW, FW, K, and KW are held.)
Process 0 (initial process) is start-reserved. Start reservation means that the process
enters a status of being executed when the PCs key switch next enters a RUN status.

[b] PCs key switches being stopped
When the PCs key switches are being stopped, the process status will remain unchanged
even if the status of the PCs PI/O and timer change.

[c] PCs key switches in the RUN (SIM RUN) status
The process status will correspond if the PCs PI/O and timer status changes while the
PCs key switches are in the RUN (SIM RUN) status.

[d] PCs key switches STOP  RUN (SIM RUN)
When the PCs key switches change from STOP to RUN (SIM RUN), they change from
[b] to [c]. At that time, process 0 enters the status of being executed immediately after
the PCs undergoes a blackout or power restoration.
Even if not immediately after the PCs undergoes a blackout or power restoration, the
system can turn into [c] after an effect (for HI-FLOW-related events only) identical with
the blackout and power restoration of the PCs if so specified.

[e] PCs key switches RUN (SIM RUN)  STOP
The status changes from [c] to [b] when the PCs key switches change from RUN (SIM
RUN) to STOP. At that time, the timers (WT and PT) will stop measurements.

3. PROCESS

3-6

3.2 Program
A process consists of a program and process information. A program is the portion that
actually controls the equipment and consists of one or more routes.

Routes

A vertical flow enclosed between process start () and process end () or between
process start () and non-synchronous process end () or between route start () and
route end () is called the route. It constitutes a component of a process program. A
process can be synchronized and/or selectively processed by more than one route. The route
where branching occurs is called the main route, while a branching route is called the
subroute. A subroute branches by para start () or by select (), and merges by para end
() or select end ().
Routes do not need to be identified by number. The route numbers are therefore controlled
by the system alone.

Synchronization routes do not necessarily need to merge. In that case, the source route will
only start the route.
The selected routes need to merge in some other route even if unconditionally branched.

Route 0 (the main route as opposed
to routes 1, 2, and 3)

Route 1 Route 3

Route 2

(Main route as
opposed to route 4)

Route 4

3. PROCESS

3-7

(1) Mixture of synchronization syntax structures and selection syntax structures.
There is no problem with the programming of synchronization syntax structures and
selection syntax structures in a closed manner. If they are created in a mixed manner,
care should be taken.
(a) The route for starting branching is the same as the route for merging branches.

All patterns are possible for both synchronization and selection.

OK! OK!

OK!

3. PROCESS

3-8

(b) The route for starting branching is different from the route for merging branches.
The system will function as long as a synchronization or selection syntax structure is
closed in itself, but it will not function correctly in any other case. This means that
these can be created as programs but will not function in actual practice.

[Normal operation]

OK! OK!

OK! OK!

3. PROCESS

3-9

[If it does not function normally]

NG! NG!

NG! NG!

NG!

3. PROCESS

3-10

(2) General syntax structure of non-synchronous routes
The general syntax structure of non-synchronous branching routes or, simply, non-
synchronous routes is a branching route that does not merge to the route from which it
has branched and that is used in conjunction with a non-synchronous process end. The
major differences between the synchronous and non-synchronous routes are described
below.

[1] Syntax structure of synchronous route (used with a process end)

[2] Syntax structure of non-synchronous route (used with a non-synchronous process
end)

For more information, see “4.17 Non-synchronous Process End.”

If all of the given branching routes merge to the route from which they have
branched, the effect of the non-synchronous process end is the same as that of a
process end.

 The running process involving the main route shown left,
which is ended by a non-synchronous process end, is
terminated by HI-FLOW system immediately when it
reaches its process end. This is the case even when not all
of the non-merging branching routes (only one shown left)
in that process have reached their ends at that time.
 The main route will be initiated by HI-FLOW system

again in a next scan even when the execution of any of the
non-merging branching routes is being continued.

 The running process involving a synchronous route is
terminated by HI-FLOW system only when all of the non-
merging branching routes (only one shown left) in that
process have reached their ends. If any one or ones of
those non-merging branching routes are still on the way to
their ends at the time that process has reached its process
end, the process will be placed in a wait state until all of
them reach their ends.

3. PROCESS

3-11

Steps
Steps, together with free labels and free comments, constitute components of a route. A step
consists of a step number, symbol figure, label, syntax, and step comment.

 ON Y0000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

* In combining syntax structure, label, and step comment, you can enter a total of up to 70
characters. Any logical operator in syntax structure consists of one character for editing
purposes, but is calculated as 2 characters for counting purposes.

represents a step.

3. PROCESS

3-12

Step number
Is the serial number of a step in the process. During programming, the system automatically
assigns such numbers. (The numbers will be from 1 to 999. That is, one process can consist
of up to 999 steps.)

 ON Y0000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

Symbol figures

A symbol figure means an overview of conditions, branches, controls, and other factors
structure. When creating a step you will need a symbol figure.
Some steps are completed with a symbol figure alone, while others need syntax structure.

 ON Y0000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

A symbol figure comes in 19 types, and the shape of each figure has a meaning.
Here is a list of figures.

* In combining syntax structure, label, and step comment, you can enter a total of up to 70

characters. Any logical operator in syntax structure consists of one character for editing
purposes, but is calculated as 2 characters for counting purposes.

3. PROCESS

3-13

List of figures usable on HI-FLOW
(1/2)

No. Figure Name Function Syntax Remark
1 Process start Starts a process. Yes

2 Process end Ends a process. No

3 Non-
synchronous
process end

Ends a process. No This symbol figure, used with
a non-synchronous branching
route(s), does not force the
process to wait for any of
those branching routes to
reach their ends.

4 Route start Starts a subroute. No

5 Route end Ends a subroute. No

6 Repeat start Starts a repetition
operation.

Yes An end is judged by >=.

7 Repeat end Ends a repetition operation. No

8 If Branches an operation by
conditions.

Yes Can be branched to another
route.

9 Jump Unconditional branching No Can be branched to another
route.

10 Escape Shuts down its own
process.

No In the case of a subprocess,
an identical scan will get you
back to the main.

11 Para start Branches to the
synchronization
subroutine.

No

12 Para end Waits for the
synchronization of the
synchronization
subroutine.

No When a wait holds for
synchronization, go to the
next step with an identical
scan.

13 Select Branches to the selection
subroutine.

No

14 Cell wait Conditions for selecting a
route when selectively
branched

Yes Use a pair of route start and
select.

15 Select end Merges selection subroutes No You do not have to merge to
the source route. To the next
step with no delay in the scan.

Merges synchronization
subroutines

No You have to merge to the
source route.
End the synchronization
subroutines.

Multi-entry Re-executes the process,
starting with this step,
when configured
conditions hold

Yes

3. PROCESS

3-14

(2/2)
No. Figure Name Function Syntax Remark
16 Wait Wait for the shift

conditions to hold
Yes

Wait for a specified time to
elapse

Yes Monitoring is possible for the
continuous holding of PI/O.

17 Box PI/O output Yes Equipped with an interlocked
Y output

Assignment expression Yes
PI/O waveform output Yes
Timer reset Yes Not limited to 7 pieces
Timer up Yes

18 Control box Status control for other
processes

Yes With master resetting

Task control Yes
19 Call Subcall for other processes Yes With master resetting

20 Function Applied instruction Yes

21 Condition with
clearing of the
last status

PI/O clear when shifting
between conditions

Yes Combined with a wait

Wait timer with
clearing of the
last status

PI/O clear when the timer
is up

Yes

*

3. PROCESS

3-15

Labels
A label consists of a code between B1 and B255 (which can be created for each process and
cannot be set to branch to another process). A colon (:) represents a jump destination from a
branch figure and can only be added to a step.

 ON Y0000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

Syntax structures

A syntax structure may contain conditional expressions, assignment expressions, and/or
control statements. It assists figures and specifies their contents. They include symbol
figures that require no syntax structure.
A syntax structure consists of an expression(s) composed of reserved words, constants,
variables, and operators.

 ON Y0000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

Syntax structure Reserved word

 Expression Constant

 Variable

 Operator

* In combining syntax structure, label, and step comment, you can enter a total of up to 70

characters. Any logical operator in syntax structure consists of one character for editing
purposes, but is calculated as 2 characters for counting purposes.

3. PROCESS

3-16

Reserved words
Note that, since the system gives the reserved word a special meaning, you cannot use it as a
symbol name.

Constants
HI-FLOW allows you to specify long-length constants.

 Constants Bit-types: 0, 1
 Word-types: Decimals: -32768 to 32767

Hexadecimals: H0 to HFFFF
 Long-lengths: Usable only in applied instructions.

Decimals: [-2147483648] to [2147483647]
Hexadeimals:[H0] to [HFFFFFFFF]

Variables

HI-FLOW allows you to use real PI/O registers (such as X and Y).
Applied instructions allow you to specify variables indirectly by placing @ before the PI/O
and handle variables as long-lengths by [].
Below is a list of real PI/O registers usable on HI-FLOW.

Variables Bit-types Simple

One-dimensional arrays For example, X0000 (5)
 However, unusable in applied

instructions.
Word-types Simple

One-dimensional arrays For example, XW0000 (FW000)
 However, unusable in applied

instructions.
Long-types Simple For example, XW0000 (FW000), but

only in applied instructions. [FW000]
handles FW000 and FW001 as long-
lengths.

Below shows how to handle the range of word-type and long-type values.
Word-types: -32768 to 32767
Long-types: -2147483648 to 2147483647

ACT, CLR, MRST, ON, OFF, RST, STP, TASK, TUP, TRS, TCNT,
CNxxx, CNExxx, PTxxx, WTxxx, WTSxxx, Bxxx, Pxxx, H????????
Name of applied instruction (see Chapter 5.)

 xxx: It means a decimal constant.
 ????????: It means a hexadecimal constant.

List of reserved words

3. PROCESS

3-17

List of PI/O registers

Item Symbol Range Type Remark

R
eg

is
te

rs

External inputs X 0000 to FFFF Bit
XW 0000 to FFF0 Word

External outputs Y 0000 to FFFF Bit
YW 0000 to FFF0 Word

Communication
link registers

G 000 to FFF Bit
 GW 000 to FF0 Word

A 000 to FFF Bit
AW 000 to FF0 Word

Internal registers R 000 to FFF Bit
RW 000 to FF0 Word
K 000 to FFF Bit
KW 000 to FF0 Word
M 0000 to FFFF Bit
MW 0000 to FFF0 Word
E 0000 to FFFF Bit
EW 0000 to FFF0 Word
Z 000 to 3FF Bit
ZW 000 to 3F0 Word
S 0000 to BFFF Bit
SW 0000 to BFF0 Word

Other registers J 000 to FFF Bit For linkage with a ladder
JW 000 to FF0 Word
Q 0000 to FFFF Bit
QW 0000 to FFF0 Word
HH 000 to 1FF Bit For linkage with other

processes
DW 000 to FFF Word
FW 000 to BFF Word

S10V extended
registers

LB 0000 to FFFF Bit
LBW 0000 to FFF0 Word
LWW 0000 to FFFF Word
LXW 0000 to 3FFF Word

Timers WT 000 to 255 Decimal notation
WTS 000 to 255
PT 000 to 255

Counters CN 000 to 127 Decimal notation
CNE 000 to 127

Labels B 001 to 255
with user-specified labels

(up to 6 characters)

 Decimal notation, for each
process

3. PROCESS

3-18

Operators
Operators come in four types: logic, four operations, relations, and parentheses. Four
operations are handled

Item Description Priority

O
pe

ra
to

rs

Logic

& (AND)
| (OR)
~ (NOT)
^ (Exclusive OR)

5

Four operations

*
/

2

+
-

3

Relations =, <>, <, >, >=, <= 4
Parentheses Up to 6-fold 1

Step comments

Step comments are written by means of alphabetic characters, numeric characters, and
special symbols. The system allows you to enter as many characters as the capacity of each
line. This does not necessarily have to be created.

 ON Y000 Syntax structure (up to 71 characters)
9 9 9 B255: Label (up to 5 characters)
 Motor running forward Step comment (up to 70 characters)
 Symbol figure
 Step number (up to 3 characters)

* In combining syntax structure, label, and step comment, you can enter a total of up to 70

characters. Any logical operator in syntax structure consists of one character for editing
purposes, but is calculated as 2 characters for counting purposes.

3. PROCESS

3-19

Free labels
HI-FLOW allows you to create jump destination labels in addition to steps. (Such labels can
be omitted.) These are called free labels. You are free to give a name other than those of the
reserved words in up to six characters, beginning with an alphabet character. Lastly, a colon
(:) is required.
A free label can only be added to something other than a step. It will become a jump
destination for a branch figure.

LABEL: Free labels (up to 6 characters)
Merging position Free comments (up to 70 characters)

Free comments

HI-FLOW allows you to create a comment somewhere other than the location of a step.
(This can be omitted.) This is called the free comment. The system allows you to use
alphabetic characters, numeric characters, and special symbols and enter as many characters
as the capacity of one line. This makes it possible to add a comment where it is easy to find.
A free comment can only be added to something other than a step.

LABEL: Free labels (up to 6 characters)
Merging position Free comments (up to 70 characters)

* When you combine a free label with a free comment, the system receives up to a total of

70 characters (including a colon (:) as a free label).

3. PROCESS

3-20

3.3 Process Information
A process consists of a program and process information. Process information defines
ancillary information regarding a process. This allows you to create a more user-friendly
process.
Process information consists of two elements and can be changed as desired by means of a
process information command.

Names

A name is something included in process information. You can give a specific process a
unique name with up to 16 regular-size characters.

Comments

A comment is something included in process information. You can give a specific process a
comment with up to 132 regular-size characters.

Comment

Process information Name

4. DESCRIPTION OF SYNTAX

4-1

CHAPTER 4 DESCRIPTION OF SYNTAX

This chapter describes the types and details of language syntax, including figures and jump
destination labels. Here are typical examples.
The [] indicates that the item enclosed is omittable. The { } selected. The ~ repeated.

4.1 Process Start and Process End
It means the start or end of a process. The system automatically adds a figure, thus obviating
the need of entry.
Process start can be set to conditions for stopping, resetting, restarting, and PI/O initializing a
specific process. (See STP, RST, CLR, and ACT.)
Process end performs an operation if all routes other than the route of the current system are
finished. If not finished, the system will wait until they are finished. (This is not the case if the
route is ended by a non-synchronous process end [see “4.17 Non-synchronous Process End”
for more information]). When started, and if the system is specified to master resetting, the
system clears the bit-type PI/O to be turned on by the process of the current system, to 0 (ON
statement and parallel timer).
The way a timer used in the process of the current system follows the way the system is
started. If the system is started with a TUP option specified, the current timer expires. If the
system is started with a TRS option specified, the system discontinues the timer. If
unspecified, the system continues timer measurement.

[Syntax]

[{ STP Conditional expression [,TCNT] {ON Group of PI/O bits [:OFF Group of PI/O bits] } }

 {OFF Group of PI/O bits [:ON Group of PI/O bits] }

{,RST Conditional expression [,TUP] {ON Group of PI/O bits [:OFF Group of PI/O bits] } }

 {OFF Group of PI/O bits [:ON Group of PI/O bits] }

{,CLR Conditional expression}

{,ACT Conditional expression}]

*Group of PI/O bits - PI/O bit formula [,PI/O bit formula] ~

(or) Without syntax

4. DESCRIPTION OF SYNTAX

4-2

STP
 When the status of a process is “being executed,” and if the conditional expression holds,

the system will stop executing the process of the current system at the current position. (It
will transit to a stop status.)
 When STP holds, the system will hold the elapsed value of the timer and the bit-type PI/O

value of the bit type to be turned on by the process of the current system (ON statement
and parallel timer). Note that this cannot prevent events where the system is turned on or
off by another process or something similar.
 When STP conditions hold, the system will turn on or off the group of optional PI/O bits.

(If the conditions do not hold, the system will turn on or off every scan in reverse of the
specification made.)
 Specify a [, TCNT] option, and the timer will continue its measurement when the system

transits to a stop status. If unspecified, the timer will hold the elapsed value.
 A process which was called when the STP conditions held will transit to a stop status in a

similar manner to the source process. But, the call complete or uncalled process will stay
unaffected.

The system will stay unaffected even if a parallel
timer was being measured when the STP conditions
held (because the call is finished).

If the STP conditional expression holds while this
process is being called, the call process will transit to
an STP status. If the [, TCNT] is unspecified, the
timer will hold its elapsed value.

4. DESCRIPTION OF SYNTAX

4-3

RST
 When the process status is being executed or stopped, and if the conditional expression

holds, the system will stop executing its own process and wait at process start (transiting
to a reset status).
 When RST holds, the system will hold the bit-type PI/O value to be turned on or off by its

own process (ON statement, OFF statement, and parallel timer). Note, however, that this
cannot prevent events where the system is turned on or off by another process.
 When RST conditions hold, the system will turn on or off the group of optional PI/O bits.

(If the conditions do not hold, the system will turn on or off every scan in reverse of the
specification made.)
 The timer will expire at the elapsed value if it is set to an [, TUP] option. If unspecified,

the system clears the elapsed value to 0 and discontinues measurement.
 A process which was being called when the RST conditions transit to an executable status.

At that time, how the PI/O and timer are handled will be the way the system is started up.
The call complete or uncalled process will remain unaffected.

CLR
If the conditions hold in a stop status or reset status, the system will clear to 0 the bit-type
PI/O to be turned on by its own process (ON statement, or bit-type PI/O used on the parallel
timer).

ACT

If the system is in a stop status or reset status and if the STP conditions or RST conditions
do not hold, and if the conditional expression holds, the system will restart executing the
process (transiting to being executed).

It will stay unaffected even if a parallel timer was being measured
when the RST conditions held (because the call is finished).

When the RST conditional expression holds while this process is
being called, the call process will transit to an executable status.
If the system is started up by master reset, it will clear the PI/O.
If it is zone-started, it will hold the PI/O.
If the system is called with a [, TUP] specified when called, the
timer will expire. If the system is called with a [, TRS] specified,
the system will discontinue its timer. If called with nothing
specified, the timer will continue its measurement.

4. DESCRIPTION OF SYNTAX

4-4

[Typical programs of process start ()] ~ is a continuation of the same line.

[1] STP X0000, RST X001, CLR X0002, ACT X0003

 When X0000 is ON, go to a stop status (the elapsed value of the timer is held).
 When X0001 is ON, go to a reset status (the timer is discontinued).
 When X0002 is ON in stop/reset status, clear to 0 the ON statement used in this

process and the bit-type PI/O in the parallel timer.
 When in a stop/reset status and if X0000 and X0001 are OFF and X0003 is ON, go

to the process being executed.

[2] STP G000&X0020, TCNT [ON J000:OFF J001] ~, RST Q0000, TUP

 When G000 and X0020 are both ON, go to a stop status (the timer continues its
measurement).
 When transiting to a stop status, turn J000 ON and J001 OFF.
 When Q0000 is ON, go to a reset status (timer expiration).
 When the process is being executed, turn OFF each scan J000 and turn ON J001.

[3] RST FW000<DW000 [OFF G100], ACT FW001=0

 When FW000 becomes smaller than DW000, go to a reset status (timer is
discontinued). Then, when transiting to a reset status, turn G100 OFF.
 When in a stop/reset status, and when FW000 is no less than DW000 and FW001 is

0, go to the process being executed.
 When the process is being executed, turn on every scan G100.

[4] RST Q0001, TUP [ON J001, G200], CLR X0200

 When Q0001 is ON, go to a reset status (timer is discontinued).
 When transiting to a reset status, turn ON J001 and G200.
 When X0200 is ON in stop/reset status, clear to 0 the ON statement used in this

process and the bit-type PI/O in the parallel timer.
 When the process is being executed, turn OFF every scan J001 and G200.

The STP, RST, CLR, and ACT in process start may take any sequence.

4. DESCRIPTION OF SYNTAX

4-5

4.2 Route Start and Route End

Route start means the start of a subroute, while route end means the end of a subroute. Be sure
to use them as a pair.
Creating a subroute builds up a synchronization syntax structure or a selection branch syntax
structure.

[Typical programs with route start and route end]

[1]

[2]

Route start

Route end

A route end is necessary even if there is an escape and a
jump figure and if they do not go further down that step.

Without syntax

Without syntax

4. DESCRIPTION OF SYNTAX

4-6

4.3 Wait
At this step, the system waits until the conditions hold for shifting to the next step. The
condition for shifting is either a conditional expression or a wait timer (waiting for a specified
time to elapse).

[Syntax]

{ Conditional expression [, timer, output bit] }

{ WTxxx expression [, conditional expression] }

Conditional expression
It consists of a bit-type or word-type number and operator.

Timers
 Each of these timers monitors the status until the conditional expression holds. The units

are 100 ms.
 Enter a decimal constant.
 The setting range is from 0 to 32767. Setting the system between -32768 and -1 will

operate the system on the assumption that it is set between 32768 and 65535.
 The system can monitor up to 64 timers at the same time. Make sure that no more than 64

timers are monitoring at the same time.

Output bits
 This bit will go ON when the conditional expression does not hold even after a time is

specified by the timer specified above.
 Registers that can be specified to output bits are bit-type registers as specified below:

Y, G, A, R, K, M, E, Z, S, J, Q
 When monitoring starts, this bit is turned off unconditionally.
 The system will not go to the next step unless the conditions hold even after a time is

specified by a specific timer.
 The output bits do not get turned off even if the conditions hold after the output bits are

turned on.

Wait timer
 Using a wait timer allows you to delay progress for a specified time in a desired step. The

system allows you to use WT000 to WT255 (decimal numbers) and to set the delay to any
value between 0 and 32767 (decimal) at increments of 100 ms. Setting it between -32768
and -1 will operate the system on the assumption that it is set between 32768 and 65535.
 If the wait timers of the same number wait for a specified time at more than one location,

the other steps will turn on the specified PI/O (standard HH1FA) until the step that
occupied the timer first opens the timer, and will wait for the timer to open. The result is
prolonged delays in other timers.
 The system allows you to set a conditional expression on the wait timer. In that case, the

system will wait until the conditional expression continues to hold for a specified time.

4. DESCRIPTION OF SYNTAX

4-7

[Typical programs of wait ()]

[1] X0000

Go to the next step when X0000 is ON.

[2] GW000<H2000

Go to the next step when GW000 becomes smaller than H2000.

[3] X0001 (FW000)

Go to the next step at the turning-on of the X register with the FW000 value as a
subscript value at the time of a condition check (which may vary every time).

[4] WT000 (100)

Go to the next step 10 seconds after the system reaches this step first.

[5] WT255 (10, X001F)

Go to the next step if X001F remains ON for one consecutive second after arriving at
this step.

[6] GW000 > H2000, 100, Y0000

Go to the next step when GW000 becomes larger than H2000. Turn on Y0000 if the
GW000 fails to become larger than H2000 within 10 seconds. Do not turn Y0000
OFF even if GW000 becomes larger than H2000 after Y0000 is turned ON.

[7] WT000 (FW000, X001F)

Go to the next step if X001F remains ON for the time (in 100 ms) of the FW000
value after arriving at this step. If the FW000 value is changed during the wait, the
starting value is used for operation and reflected when a process is executed next
time.

4. DESCRIPTION OF SYNTAX

4-8

4.4 Boxes
The system performs PI/O output, data processing, and timer control. Separating boxes with a
colon (:) produces a complex sentence.

[Syntax]

{ON PI/O bit expression [, PI/O bit expression] ~}
{OFF PI/O bit expression [, PI/O bit expression] ~}
{Assignment expression}
{Special assignment expression}
{PT number (t1 [,t2]), {ON Bit PI/O [, Bit PI/O] ~ [:OFF Bit PI/O [, Bit PI/O] ~] } } }
 {OFF Bit PI/O [, Bit PI/O] ~ }
{ {TUP} {WT number} {, WT number} }
{TRS} {PT number} {, PT number} ~
 {CN number} {, CN number}

{:ON PI/O bit expression [,PI/O bit expression ~ Repetition] }
{:OFF PI/O bit expression [,PI/O bit expression ~ Repetition] }
{: Assignment expression}
{: PT number (t1 [,t2], {ON Bit PI/O [, Bit PI/O] ~ [:OFF Bit PI/O [, Bit PI/O] ~] }) } ~
 {OFF Bit PI/O [, Bit PI/O] ~ }
{:{TUP} {WT number} {, WT number} }
{TRS} {PT number} {, PT number} ~
 {CN number} {, CN number}

Assignment expression

Assign the result of logic and four operations to a variable. An expression can take the form
of a single-dimensional array, while array subscript values can only take the form of a word
type. Below list the variables and operators available.

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
LBW
LWW
LXW
Decimal
constants
Hexadecimal
constants

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
LBW
LWW
LXW
Decimal
constants
Hexadecimal
constants

Y, G, A
R, K, M
E, Z, J
Q, HH, LB

Y, G, A
R, K, M
E, Z, J
Q, HH, LB
X, S
0, 1

Y, G, A
R, K, M
E, Z, J
Q, HH, LB
X, S
0, 1

=

()
&
|
~
^

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
LBW
LWW
LXW

()
&
|
~
^
*
/
+
-

Bit-type variables

Word-type variables

=

4. DESCRIPTION OF SYNTAX

4-9

The system regards operation items and results as uncoded.
In multiplications, both the multiplier and multiplicand are both one-word. The portion that
cannot be expressed in one word is rounded off, with the result being one-word.
In divisions, too, both the divisor and the dividend are one-word. The portion that cannot be
expressed in one word is rounded off, with the result being one-word. Dividing a number by
0 results in the answer remaining unchanged.
The status of operation results (including normal termination and overflow occurrence) will
not be answered back. If answer back is necessary, use an applied instruction.

Special assignment expression
Support a special assignment expression for the timer (WR) and counter (CN).

WTS is a timer setting value which can be changed any time to make the timer in the
measurement process end earlier than when measurement started. Such changes have no
effect if the timer does not start measurement or has already expired.
CNE is a counter end value that can be effectively used in repeat start/repeat end syntax.
During the repetition process, the end value can be changed to finish the timer earlier or
later than the end value when the timer started. CNE is not effective in syntax other than
repeat start/repeat end. Note that changing an end value improperly might result in an
infinite loop and system failure.

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
LBW
LWW
LXW
Decimal constant

Hex. constant

YW, GW
AW, RW
KW, MW
EW, ZW
JW, QW
DW, FW
XW, SW
LBW
LWW
LXW
Decimal constant

Hex. constant

WTS
CNE

=

()
&
｜
～
＾
*
/
+
-

(Word-type variables)

4. DESCRIPTION OF SYNTAX

4-10

[Typical programs with assignment statements ()]

[1] FW000 = FW001 + FW002

Add FW001 and FW002 at the particular time, assign the sum to FW000, and go to
the next step.

[2] YW0000 (DW001) = HFFFF

Assign /FFFF to the array of YW0000 with DW001 at the time as a subscript value.

[3] WTS001 = 50

Change the setting value of WT001 to 50.

[4] CNE001 = DW000

Change the end value of CN001 to the content of DW000.

4. DESCRIPTION OF SYNTAX

4-11

The timer (WT) operations are shown below.

<Normal timeout>

If measurement starts with WT001 set to 100, a timeout is caused by the 100th timer
interrupt after the start of measurement.

<Timeout when timer setting value is changed>

If measurement starts with WT001 set to 100, and then, after 5000 ms, is set to 50, a
timeout is caused by the 51st timer interrupt after the start of measurement. In other words,
the timeout occurs when the timer interrupt occurs 100 ms after the timer setting value is
changed (not at the moment of change).

100 ms (1st time) 10000 ms (100th time)

SC

WT001(100)
Start of

measurement

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

100 ms
timer

SC: Sequence Cycle

SC SC SC SC SC SC SC

WT001
Timeout

0 ms

0 ms 100 ms (1st time) 5000 ms (50th time) 5100 ms (51st time)

SC SC SC SC SC SC SC SC

WTS001 = 50
Change of timer setting

value

WT001
Timeout

WT001(100)
Start of

measurement

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

HI-FLOW

Ladder

100ms
timer

SC: Sequence Cycle

4. DESCRIPTION OF SYNTAX

4-12

ON statements
Turn on the specified PI/O output bits (Y, G, A, R, K, M, E, Z, J, Q, and HH). Separating
them with a comma (,) produces more than one PI/O output. Although the PI/O output bit
can take a one-dimensional array, the array subscript value can only be a word type.

[Typical programs with ON statements ()]

[1] ON Y0000, Y000F: OFF Y0001

Turn ON Y0000 and Y000F, turn OFF Y0001, and go to the next step.

[2] ON G000 (GW010)

Turn ON the bit away from G000 by the GW010 value at the particular time and go
to the next step.

OFF statements
Turn OFF the specified PI/O bits (Y, G, A, R, K, M, E, Z, J, Q, and HH). Separating it with
a comma (,) will produce more than one PI/O output. PI/O output bits can take the form of a
one-dimensional array, while array subscript values can only be word types.

[Typical programs with OFF statements ()]

[1] OFF Y0000, Y0001

Turn OFF Y0000 and Y0001 and go to the next step.

[2] OFF G000 (GW010)

Turn OFF the bit separated from G000 by the GW010 value at the particular time,
and then go to the next step.

4. DESCRIPTION OF SYNTAX

4-13

Parallel timers
The system will produce a waveform onto a desired PI/O. The t1 represents rising time,
while the t2 represents falling time.
When t1 is 0, the ON-specified PI/O will only fall after the elapse of time t2. The OFF-
specified PI/O will only rise after the elapse of time t2. When t2 is 0 or by default, the ON-
specified PI/O will only rise after the elapse of time t1. The OFF-specified PI/O will only
fall after the elapse of time t2. Soon after giving an instruction for waveform output, the
system will go to the next step.
The system allows you to use any number between PT000 and PT255 and to set the time at
increments of 100 ms in the range from 0 to 65535, to t1 and t2 respectively. Setting the
system between -32768 and -1 will operate the system on the assumption that it is set
between 32768 and 65535.
If a specified timer is occupied when the timer is started up, the system will turn ON the
specified PI/O (standard HH1F9) and wait until the timer is opened.
The bit PI/O available can take the form of more than one description with a comma (,) and
a complex sentence or single-dimensional array with a colon (:). The bit PI/O types
available are Y, G, A, R, K, M, E, Z, J, Q, and HH.

[Typical programs with parallel timer ()]

[1] PT000 (10, 10, ON Y0000: OFF Y0001)

 On passing by this step
(to a next step at once)

1 second
later

2 seconds
later

Y0000 ? OFF ON OFF
Y0001 ? ON OFF ON

?: ON or OFF

[2] PT010 (20, ON G000: OFF G001)

 On passing by this step
(to a next step at once)

2 seconds
later

G000 ? OFF ON 
G001 ? ON OFF 

?: ON or OFF

t1 t2

ON

OFF

(ON-specified
PI/O)

t1 t2

ON

OFF

(OFF-specified
PI/O)

4. DESCRIPTION OF SYNTAX

4-14

[3] PT255 (0, 30, ON J100: OFF J101)

 On passing by this step
(to a next step at once)

3 seconds
later

J100 ? ON OFF 
J101 ? OFF ON 

?: ON or OFF

TUP (timer up)
Put the timer in the process of measurement into the expired position.
For a wait timer, set the elapsed value of the timer in the process of measurement to the
setting. As a result, the wait status is canceled and step waiting for the timer to expire will
go to the next step.
For a parallel timer, set the elapsed value of the timer to t2 (or t1 if t2 is set to its default).
As a result, the parallel timer produces a PI/O output earlier than the specified time.
For a loop counter, set the elapsed value of the counter to the final value. As a result, the
system will get out at the next loop check.

[Typical programs with timer up ()]

[1] TUP WT001, WT002, PT001, CN001

Put the wait timers 1 and 2, parallel timer 1, and counter 1 to the up position.

TRS (timer reset)

Reset the timer in the process of measurement.
In the case of a wait timer/loop counter, the system will perform the same operation as when
the timer is up. In the case of a parallel timer, reset the elapsed times t1 and t2 of the timer
in the process of measurement. The status of the specified PI/O will be held as that when
timer reset was issued.

[Typical programs with timer reset ()]

[1] TRS WT001, WT002, PT001, CN001

Reset wait timers 1 and 2, parallel timer 1, and counter 1.

4. DESCRIPTION OF SYNTAX

4-15

4.5 Control Box
The system allows you to start (restart), stop, reset, and clear the PI/O with regard to other
processes.

[Syntax]

{ ACT Pxxx { [-Pxxx] [,Step number] [, MRST] [{, TUP}] } }
{, TRS}

{, TASK, Factor number }
{ RST Pxxx { [-Pxxx] [, TUP] } }

{ [, TASK] }
{ STP Pxxx [-Pxxx] [, TCNT] }
{ CLR Pxxx [-Pxxx] }

ACT

 Item Description
1 Function overview Start a process with P0 to P255. The process range can be specified with a

hyphen (-). If no step number is specified, begin with step 1. The specified
step does not have to be the main route. Immediately after startup, go to
the next step.

2 Action of the process
started

A started process is not executed only once. When the process end is
finished, the next scan executes the process again, beginning with the
process start. (The condition is similar even if a step is specified.)

3 Startup of the process
being executed

Turn on the ACT bit of the result display bit of the control box, then go to
the next step (standard HH1FF).

4 Startup of a non-
existent process

Turn on the ACT bit of the result display bit of the control box, then go to
the next step (standard HH1FF).

5 Startup of a stopped
process

The stopped process starts up, resuming the execution.

6 Startup of a reset
process

The reset process starts up, resuming the execution with the process start.

7 Indication of the timer
status

When set to a TUP option, the system will put into the up position the
parallel timer occupied in its own process when executing a process end or
escape and when shifting to an executable status.
When set to a , TRS option, the system will reset the parallel timer
occupied by its own process when executing a process end or escape and
when shifting to an executable status.

8 Startup of master reset
specification

When set to a , MRST option, the system will clear to 0 the bit-type PI/O
turned on in its own process when executing a process end or escape and
when shifting to an executable status.

9 Startup of CPMS tasks The system issues a RLEAS or QUEUE macro by specifying Pxxx as the
CPMS task (1 to 255) on CP with the , TASK, Factor number option.

4. DESCRIPTION OF SYNTAX

4-16

RST

 Item Description
1 Function overview The system will reset a process specified with P0 to P255. The range can be

set with a hyphen (-). Immediately after issuance, the system will go to the
next step.

2 Action of a reset
process

The system will abort executing a specified process, transit to a reset status,
and wait for re-execution at process start (will start ACT from another process
or re-execute the process when the ACT condition holds at its own process
start).

3 Indication of the
timer status

When set to a , TUP option, the system will put into the up position the
parallel timer occupied by the process. If unspecified, the system will reset the
timer. This option will only be effective in the specified process and will not
affect the call process.

4 PI/O of the process
to be reset

If a master reset is started, the system will clear to 0 the bit PI/O turned on or
off in its own process.

5 Issuance to a
stopped process

The system will abort executing a specified process, transit to a reset status,
and wait for re-execution at process start (will start ACT from another process
or re-execute the process when the ACT condition holds at its own process
start).

6 Issuance to a non-
existent process

The system will turn on the RST bit of the result display bit of the control
box, then move on to the next step (standard HH1FD).

7 Issuance of a reset
to the own process

The system specifies its own process number by a parameter.

8 Stoppage of the
CPMS task

The system issues an ABORT macro by specifying Pxxx as the CPMS task (1
to 255) on CP with the TASK option. (This function is unsupported).

STP

 Item Description

1 Function overview The system will stop a process specified with PO to P255. The range can be
specified with a hyphen (-). Immediately after issuance, the system will go to
the next step.

2 Action of a stopped
process

The system will stop executing a specified process and transit to a stopped
status. It will wait for re-execution at the current position.

3 Re-execution
conditions

The system will start ACT from another process and re-execute the process
when the ACT conditions hold for starting its own process.

4 Indication of the
timer status

When set to a , TCNT option, the system will continue to measure the parallel
timer occupied by the process. When unspecified, the system will stop its
timer measurement. This option is effective for all processes strung by call by
a specified process.

5 PI/O of the process
to be stopped

When a master reset is started, the system will clear to 0 the bit PI/O turned
on or off by its own process.

6 Issuance to a non-
existent process

The system will turn on the STP bit of the result display bit of the control box
and go to the next step (standard HH1FE).

7 Issuance to a reset
process

The system will turn on the STP bit of the result display bit of the control box
and go to the next step (standard HH1FE).

8 Issuance of a stop to
the own process

The system will specify its own process number by a parameter.

4. DESCRIPTION OF SYNTAX

4-17

CLR

 Item Description
1 Function overview The system will clear to 0 the bit PI/O turned on or off by a process specified

with P0 to P255. Immediately after issuance, the system will go to the next
step. The system will only allow the stoppage and reset statuses of the
specified process. Note that the system will clear, without checking, the PI/O
use status in other processes. The range can be specified with a hyphen (-).

2 Issuance to a non-
existent process

The system will turn on the CLR bit of the result display bit of the control
box, and then go to the next step (standard HH1FC).

3 Issuance to a
process being
executed

The system will turn on the CLR bit of the result display bit of the control
box, and then go to the next step (standard HH1FC).

4 Issuance to an
unstarted process

The system will clear PI/O and go to the next step.

[Typical programs with the control box ()]

[1] ACT P1-P5, MRST

Start a master reset on processes 1 to 5, beginning with step 1, then go to the next
step. The started process will cause the parallel timer to continue its measurement
when executing the process end or escape and when transiting to a process-
executable status.

[2] ACT P100, 5, TUP

Start the zone on process 100, beginning with step 5, then go to the next step. The
started process will cause the parallel timer to go into the up position when executing
the process end or escape and when transiting a process-executable status.

[3] ACT P80, TASK, 3

Issue an RLEAS macro with regard to CPMS task 80 and issue a QUEUE macro with
factor 3, and then go to the next step.

[4] RST P10

Reset process 10, and then go to the next step. When the RST is in the issued status,
the parallel timer in the process of measurement will be reset.

[5] RST P11, TUP

Reset process 11, and then go to the next step. When an RST is issued, the parallel
timer in the process of measurement will expire.

4. DESCRIPTION OF SYNTAX

4-18

[6] RST P12, TASK

Issue an ABORT macro to CPMS task 12, and then go to the next step. (This function
is unsupported.)

[7] STP P50

Put process 50 into a stopped status, and then go to the next step. When an STP is
issued, the parallel/wait timer in the process of measurement will stop.

[8] STP P51, TCNT

Put process 51 into a stopped status, and then go to the next step. When an STP is
issued, the parallel/wait timer in the process of measurement will continue its
measurement.

[9] CLR P40

Clear to 0 the bit-type PI/O used in process 40, and then go to the next step.

4. DESCRIPTION OF SYNTAX

4-19

4.6 Repeat Start and Repeat End
The system will execute the process repeatedly between the repeat start and repeat end. A
syntax error will occur if the number of repeat starts is not the same as that of repeat ends in
the same route. The system will add an increment to the initial value every time it repeats the
process. It will continue repeating until the value becomes larger than the final value. If the
initial value is larger than the final one, the system will go to the next step without executing
the process between the repeat start and the repeat end. Omitting the increment will result in
the increment becoming 1. If the increment is 0, there will be an infinite loop.
The setting range of the initial value, final value, and increments is from 0 to 65535. Setting
the range between -32768 and -1 will operate the system on the assumption that it is set
between 32768 and 65535.

[Syntax]

CNxxx (Initial value, final value {, increment})

(xxx is a decimal between 000 and 127)

Without syntax

[Typical programs with repeat start () and repeat end ()]

[1]
CN000 (1, 10)

Repeat the process between repeat start and repeat end ten times, then go to the
step following the repeat end. Immediately after executing the repeat end, the
system will execute the repeat start.

[2]
CN127 (1, 5, 2)

Repeat the process between repeat start and repeat end three times, then go to the
step following the repeat end.

[3]
CN001 (FW000, FW001, FW002)

The value between FW000 and FW002 that was used when the system passed
through the repeat start for the first time will be the initial value, final value, or an
increment.

4. DESCRIPTION OF SYNTAX

4-20

4.7 If
The system will judge whether a specific conditional expression is true or false, and then
perform a corresponding operation. If the conditional expression holds, the system will
execute the portion up to true, , comma (,) and semi-colon (;). If the condition does not hold,
the system will execute the portion after false and semi-colon (;). If the system omits the
portion after the semi-colon (;), and if the conditional expression does not hold, it will go to
the next step. If a label is specified after the comma (,) and semi-colon (;), it will branch to
that label.

[Syntax]

Conditional expression, { Jump destination label(Bxxx) }

 { Free label }
 {ON/OFF} {:ON/OFF}
 {Assignment expression} {:Assignment expression}
 {ACT statement} {:ACT statement}
 {STP statement} {:STP statement} ~
 {RST statement} {:RST statement}
 {CLR statement} {:CLR statement}
 {TUP statement} {:TUP statement}
 {TRS statement} {:TRS statement}
 {PT statement} {:PT statement}

 { ; Jump destination label (Bxxx) }
 { ; Free label }
 {;ON/OFF} {:ON/OFF}
 {Assignment expression} {:Assignment expression}
 {;ACT statement} {:ACT statement}
 {;STP statement} {:STP statement} ~
 {;RST statement} {:RST statement}
 {;CLR statement} {:CLR statement}
 {;TUP statement} {:TUP statement}
 {;TRS statement} {:TRS statement}
 {;PT statement} {:PT statement}

 (xxx is a decimal between 1 and 255.)

<Notice>
The system does not allow branching to another process but does allow branching to another
route. However, note that, in actually executing an operation, the system may not function
normally in any of the following cases:
 Branching from loop start to the inside of the loop end
 Branching from inside the parallel processing
 Branching into parallel processing
 Branching to the route already being executed

4. DESCRIPTION OF SYNTAX

4-21

[Typical programs with if ()]

[1] X0000, B1; LABEL

When X0000 is ON, jump to a step where a B1 label is present. When it is OFF, the
system will jump to the step following the place where a LABEL label is present.

[2] H0<> (YW0000&H3000), ON Q0005

If the logical product of YW0000 and H3000 is not 0, turn ON Q0005. If it is 0, do
nothing and go to the next step.

[3] Q0000, FW100=FW100+1; ACT P10

If Q0000 is ON, add 1 to FW000 and go to the next step. If it is OFF, conduct an
ACT start on process 10 and go to the next step.

[4] GW000=4, STP P6: RST P7; EW0000=8: ON J000

When GW000 is 4, stop process 6, reset process 7, and go to the next step.
When GW000 is not 4, set EW0000 to 8, turn on J000, and go to the next step.

[5] X0010, ON J000, J001, J002, J003; ERRLB

When X0010 is ON, turn ON J000, J001, J002, and J003 and go to the next step.
When X0010 is OFF, jump to the step following the place where an ERRLB label is
present.

4. DESCRIPTION OF SYNTAX

4-22

4.8 Jump
The system will branch unconditionally to a specified label in the process. The system allows
you to specify labels from B1 to B255 for each process. HI-FLOW specifies free labels
(which must be up to 6 characters and which you are free to name and can add only to an
entity other than steps).

[Syntax]

{ Jump destination label (Bxxx) }
{ Free label }

<Notice>

The system does not allow branching to another process but does allow branching to
another route. However, note that, when actually executing an operation, the system may
not function correctly in any of the following cases:
 Branching from the loop start to the inside of the loop end
 Branching from inside the parallel processing
 Branching into parallel processing
 Branching a route already being executed

[Typical programs with jump ()]

[1] B1

Jump to a step where a B1 label is present, then execute the operation immediately,
beginning with that step.

[2] ERRBLK

Jump to the step following the place where a LABEL label is present, then execute the
operation immediately, beginning with that step.

4. DESCRIPTION OF SYNTAX

4-23

4.9 Escape
The system will shut down its own process.
If it is the main process, the system will shut down all routes and transit to an executable
status. At that time, if a process (or processes) is being called, the system will make all of
them escape. The timers in the system’s own process are used in the same way as when the
system is started up (TUP and TRS options).
Subprocesses are basically handled in the same way as the main process. The system will
restore the executed place to the main process with the same scan.
When started by master reset, the system will clear to 0 the bit-type PI/O to be turned on by its
own process (ON statement and parallel timer).

[Syntax]

Without syntax

[Typical programs with escape ()]

[1]

[2]

If this step is executed, and if the
process was ACT-started, the system
will stop executing the process.

Call

If this step is executed in a subprocess, the
system will stop executing the process and
go back to the main process, executing it.

4. DESCRIPTION OF SYNTAX

4-24

4.10 Para Start and Para End
A pair consisting of para start and para end represents a portion to be synchronized.
The para start will start a synchronized subroute, and then go to the step following the
system’s own route.
The para end indicates that the system will execute the step following its own route after all
merging routes are finished.
In conventional practice, the system used to monitor the end of the subroute where the para
end merged (that is, the main route was being executed), so that the execution of the next
step is delayed by one scan. The system checks whether both para end and route end merged
for the last time or not. If merged, execution of the next step at the main route merging
position is finished. If not, execution of the system’s own route is finished (the main route is
not always being executed), so no scan delay occurs.

[Syntax]

Without syntax

Without syntax

[Typical programs with para start () and para end ()]

[1] [2]

[3]

In this structure, the operation is as follows:
Merging position ①: Wait for merge of main, sub 11, sub 12, and sub 12.
Merging position ②: Wait for merge of sub 21 and sub 31.
Merging position ③: Wait for merge of main and sub 21.

①

②

③

4. DESCRIPTION OF SYNTAX

4-25

4.11 Para Start and Select End
A pair consisting of para start and select end represents a portion to be processed in parallel.
The para start will start multiple subroutes, and then go to the step following the system’s
own route.
When one of the merging routes is finished, the select end shuts down the other unfinished
routes, and then executes the step following the system’s own route.

[Syntax]

Without syntax

Without syntax

[Typical programs with para start () and select end ()]

[1] [2]

4. DESCRIPTION OF SYNTAX

4-26

[Description of operation 1]
If there are para start + select end only

 If step ① of the main route is executed, the system will execute four routes of main
route, sub 1, sub 2, and sub 3 in parallel.
 If the main route, sub 1, sub 2, or sub 3 is finished (merged), the system will shut down

the others, and then execute the next step of the main route.

[Description of operation 2]
If para start + select end is included in para start + select end

 If merge 1 arrives first (in this case, the main route arrives first), the system will shut
down sub 1 and sub 2.
 If merge 2 arrives first, the system will execute the normal para start + select end

operation of sub 1 and sub 2.

Merge 1

Sub 1

Sub 2

Merge 2

①

②

Sub 1 Sub 2 Sub 3

4. DESCRIPTION OF SYNTAX

4-27

[Description of operation 3]
If para start + para end is included in para start + select end

 If merge 1 arrives first (in this case, the main route arrives first), the system will shut
down sub 1 and sub 2.
 If merge 2 arrives first, the system will execute the normal para start + para end operation

of sub 1 and sub 2.

[Description of operation 4]
If select + select end is included in para start + select end

 If merge 1 arrives first (in this case, the main route arrives first), the system will shut
down sub 1 and sub 2.
 If merge 2 arrives first, the system will execute the normal select + select end operation of

sub 1 and sub 2.

Merge 1

Sub 1

Sub 2

Merge 2

Merge 1

Sub 1

Sub 2

Merge 2

4. DESCRIPTION OF SYNTAX

4-28

NOTICE

In the syntax that makes para start and merges at select end (as in the pattern
shown below), do not describe any syntax that makes para start again in the
middle of a subroute and merges at select end into the main route, not the
subroute. If a merging position is reached, the system will shut down only the
route having the same merging position. Therefore, non-merging subroutes that
are being executed will remain as they are.

[Description of operation]
 During execution of sub 1 to sub 3, if sub 3 reaches merge 2 before sub 1 and

sub 2 reach merge 3, the execution points of sub 1 and sub 2 will not be shut
down.

Merge1

Merge3

Merge 2

Step A

Sub 1 Sub 2

Sub 3

4. DESCRIPTION OF SYNTAX

4-29

4.12 Select, Cell Wait, and Select End
A set of select, cell wait, and select end represents a portion of selective branching.
The select will start the selective branching route, and then go to the cell wait of the system’s
own route. (The select and the cell wait or the route start and the cell wait must be
consecutive.)
The cell wait will end the execution of another route when the conditional expression of the
system’s own route holds, and will go to the step following the system’s own route. The
present redesign is such that, when a subroute is selected, the system will terminate the main
route (will only execute the route selected).
The system will check the conditional expression from the left route of the screen, so that, if
more than one condition holds with the same scan, the system will select the route at the
extreme left.
If a subroute is selected, the route end of the route will start the main route and execute the
step following the merging position. Therefore, no scan delay will result.
It is acceptable for both select end and select to not exist on the same route (not merge into
the source route).

<Notice>

The cell wait must be at the step following the select.

[Syntax]

Without syntax

Conditional expression [, timer, output bit]

Without syntax

 Timer
 Output bit
* For timers and output bits, see “4.3 Wait.”

[Typical programs with select (), cell wait (), and select end ()]

[1] [2]

4. DESCRIPTION OF SYNTAX

4-30

4.13 Multi-entry
When a conditional expression is configured in the same figure as the select end, the system
will regard it as a multi-entry.
When a process is being executed, and when a conditional expression holds, the system will
re-execute the operation beginning with the step where the multi-entry is present. (Even
when executing the process for the first time, the system will begin with that process when
the conditional expression holds.) A check of the conditional expression is conducted at the
first point of the scan and the system may be delayed by up to one scan.
The system will begin with the smallest-step condition when conducting a check. When
more than one condition holds in the same scan, the system will re-execute the operation,
beginning with the step having the smallest step number.
A multi-entry can be configured at the subroute.
When conditions hold and the system executes an operation, it will initialize all routes other
than those equipped with timers (PT and WT), counter (CN), called process, and multi-entry.
But, it will hold the PI/O value.

[Syntax]

Conditional expression

<Notice>
 Note that configuring a multi-entry inside the loop end at the loop start may cause the

system to malfunction.
 The system does not allow you to configure a multi-entry in the subroute of a

synchronization syntax.

[Typical programs with multi-entry ()]

[1] X0000

Re-execute the operation, beginning with this step, when X0000 is ON.

[2] GW000<H2000

When GW000 is smaller than H2000, re-execute the operation, beginning with this
step.

4. DESCRIPTION OF SYNTAX

4-31

4.14 Call
The system can conduct a subroutine call for a process specified by P0 through P255. The [,
step number] option starts executing the operation, beginning with a specified step.
(Omitting it will cause the system to begin with the process start.)
If no process is specified, no step is specified, or if the system calls its own process, the
system will turn on the CALL bit of the result display bit of the control box, and then go to
the next step.
When a specified process is already being executed, the system will continue to wait until it
can call the process (shift to an executable status). It will ACT-start and can call the process
being reset.
The system can call another process with the subprocess, and can nest up to 16 of them.
The [, MRST] option conducts a master reset call. When a master reset call is made, the
system will clear to 0 the bit PI/O turned on by its own process when the system terminates
the call process, executes the escape, and shifts to an executable status.
The [, TUP] option will cause the parallel timer occupied by the system’s own process to
become up when the system executes the process end or escape and when it shifts to an
execution-specifiable status.
The [, TRS] option resets the parallel timer occupied by the system’s own process when the
system executes the process end and escape and when it shifts to an executable status. If no
such thing is specified, the system will continue to measure its parallel timer after the end of
the process.

[Syntax]

Pxxx [,Step number] [, MRST] { [, TUP] }
 { [, TUP] }

[Typical programs with call ()]

[1] P1

The system will make a zone call on process 1, from step 1. The process called will
cause the parallel timer to continue its measurement when the system executes the
process end and escape and when it shifts to a process executable status.

[2] P2, 5, MRST

The system makes a master reset call on process 2 from step 5. The process called
will cause the parallel timer to continue its measurement when the system executes
the process end and escape and when it shifts to a process executable status.

[3] P3, TUP

The system will make a zone call on process 3 from step 1. The process called will
cause the parallel timer to become up when the system executes the process end and
escape and when it transits to a process executable status.

4. DESCRIPTION OF SYNTAX

4-32

4.15 Function
This function is designed to complement the function of operation and data processing
supported by the box. For details, see Chapter 5.

[Syntax]

Name of applied instruction [,Parameter] ~

4.16 Wait with Precondition
Wait remains the same until the conditions for shifting hold. After the conditions hold, and
before the system goes to the next step, and if the last step is an ON statement or a process
call, the system first turns off the PI/O before continuing to the next step. The system will go
on without doing anything if the last step is not an ON statement or a process call. (It is the
same as a wait.)
Note that the system will not clear the last condition of the source of the branch if it begins
with this step by branching. This function is for conforming to the SFC standards.

[Syntax]

{ Conditional expression }
{ WTxxx (formula [,Conditional expression]) }

*

4. DESCRIPTION OF SYNTAX

4-33

4.17 Non-synchronous Process End
A non-synchronous process end, used in conjunction with a process start, causes the process
to be terminated without waiting for any of the given non-synchronous branching routes to
reach their ends. To make a non-synchronous process end function asynchronously with all
of the given
non-synchronous routes, use the non-synchronous process end and non-synchronous routes
in such a way that the latter do not merge to the main route -- the route from which they have
branched -- at its route end.
If the above process is initially started by the ACT statement at its process start, then its main
route proceeds until it reaches the process end, and, in the meantime, the given non-
synchronous routes are started as requested. When the main route reaches the process end,
the HI-FLOW system terminates the process even if any one or ones of the given non-
synchronous routes have not reached their ends. Then, the process is started again and
continues as far as the route start of one of the non-synchronous routes that was previously
on the way to its route end. At the route start, the HI-FLOW system checks if the non-
synchronous route has reached its route end. If not, the HI-FLOW system does not start it
again.
If the above process is initially started by calling as a subroutine, then it is not terminated
immediately when its main route reaches the process end, but instead it is placed in a wait
state until all of the non-synchronous routes reach their ends, as in cases where the main
route is ended by a (synchronous) process end.

[Syntax]

Without syntax

[Sample programs]

[1] Sample program using only one non-synchronous route

<Sample circuit> <Timing chart>

(1) When the main route reaches its non-synchronous process end, the process is

terminated, but the non-synchronous route is left undisturbed because it is still on the
way to its route end.

(2) Because the non-synchronous route has already reached its end, it is started again at
its route start.

(3) Although the process has reached the route start of the non-synchronous route, the
non-synchronous route is left undisturbed because it is still on the way to its route
end.

C

A

B

A B
C

A B A B A B
C C

(1) (2) (3)

4. DESCRIPTION OF SYNTAX

4-34

[2] Sample program using two non-synchronous routes
<Sample circuit> <Timing chart>

(1) When the process again reaches the route start of the non-synchronous route crossing

through box D, it starts that non-synchronous route because it has already reached its
route end. However, the non-synchronous route crossing through box C is left
undisturbed because it is still on the way to its route end.

[3] Sample program using both a main route ended by non-synchronous process end and a

subroute with its route end merging to that main route
<Sample circuit> <Timing chart>

The effect of this sample program is the same as that of a program using a main route
ended by (synchronous) process end. In the above sample program, when the main route
and subroute proceed to the para end normally, the main route proceeds further to the
non-synchronous process end.

C

A

B D

A B
C

A B A B A B
C

(1)

D D D

B A

C

A C A C A
B B B

4. DESCRIPTION OF SYNTAX

4-35

NOTICE

 Do not describe any syntax that has differing non-synchronous processes
between branching and merging, and that has a non-synchronous route as a
merging route (as in the pattern shown below). If execution is attempted, a new
main route will not be started because the system judges that a subroute is
being executed.

 If a master reset specification is given at the start of a process, and bit-type

PI/O data is used, then the bit-type PI/O data may be zero-cleared.

This Page Intentionally Left Blank

5. APPLIED INSTRUCTIONS

5-1

CHAPTER 5 APPLIED INSTRUCTIONS

5.1 Overview
The function of operation and that of data processing supported by HI-FLOW language syntax
are four operations, logical operations, and assignment only (word length only). The PC HI-
FLOW then supports the applied instructions of functions similarly to the ladder diagram.

5.2 How to Use It

Applied instructions are programmed as follows:

5.3 Parameters

In applied instructions of HI-FLOW, each applied instruction and its applicable parameter
type do not have to correspond, unlike the operation function of the ladder.

 Ladder

 HI-FLOW

For example FW000 0001 0001

1 0000 0000

2 0002 After executing
applied instructions

0002

3 1111 0000

4 1111 0003

Name of applied instruction parameter [, parameter] ~

ADD FW000, [FW001], [FW003]

Word length Long length

FW000 + FW001 = FW002
All parameters are word-length.

ADD

F

5. APPLIED INSTRUCTIONS

5-2

Parameters generally come in three categories: source, destination, and result. They are
expressed as S, D, and R respectively.
Parameters come in three categories: bit-type PI/O, word-type PI/O, and constant.
For applied instructions of HI-FLOW, the system allows you to specify an addressing mode
for parameters. Addressing modes come in four categories as listed below.

[1] Specification of direct word length: Describes it just like the parameter.
[2] Specification of direct long length: Encloses the parameter in [] (brackets).
[3] Specification of indirect word length: Adds @ before the description of [1]
[4] Specification of indirect long length: Adds @ before the description of [2]

Addressing
mode

Parameters
Bit-type PI/O Word-type PI/O Constant

X0000 Data 1
X0001 Data 2

Data 1, 2 Data a
 Data b

FW000 Data 3
FW001 Data 4

Data 3, 4 Data c
 Data d

XXXX YYYYYYYY

XXXX Data e

 Data f
YYYYYYYY Data g

 Data h

[1] Direct word
length

AND result of
data 1 and 1

Data 3 XXXX, but long-length
YYYYYYYY is a low-
level word only.

 Example X0000 FW000 1230
H20000000

[2] Direct long
length

AND result of
data 1, 2 and 1

Data 3, 4 XXXX, YYYYYYYY
However, XXXX is
handled as a long-length.

 Example [X0000] [FW000] [H1234]
[H20000000]

[3] Indirect word
length

Parameter error Data c
However, an error occurs
when data 3, 4 is an odd
number.

For XXXX, data e.
For YYYYYYYY,
data g.
If XXXX and
YYYYYYYY are odd
numbers, it is an error.

 Example @FW000 @HFFF0
@H180000

[4] Indirect long
length

Parameter error Data c, d
However, an error occurs
when data 3,4 is an odd
number.

For XXXX, data e, f.
For YYYYYYYY,
data g, h.
If XXXX and
YYYYYYYY are odd
numbers, it is an error.

 Example @[FW000] @[HFFF0]
@[H180000]

<Notice>
In the ranges of bit-type PI/O areas, do not specify parameters of applied instructions with an indirect long

length (H0220 0000 to H023F 0000 and H0270 0000 to H027F 0000) because long-word access to those

areas cannot be performed.

5. APPLIED INSTRUCTIONS

5-3

5.4 Type Conversion in Operations
When the system takes in a parameter value for performing an operation, it expands all their
codes to long-lengths.

FW000 8001 Handled as HFFFF8001 during an operation.

When storing an operation result, the system converts the type of the result according to the
destination.

Operation result HFFFF8001

Bit-type PI/O Word-length destination Long-length destination
 H0001 H8001 HFFFF8001

Do AND operation
with 1 and stored

Store a lower-level word.
Store a maximum/minimum
when an overflow occurs.

5. APPLIED INSTRUCTIONS

5-4

5.5 System Error Flags
Various flags are set to SW0020 according to the execution results of applied instructions of
HI-FLOW.

Flag types

X : Extend S0020
E : Error S0021
P : Positive S0022
N : Negative S0023
Z : Zero S0024
V : Overflow S0025
F.U: For future use

(MSB) (LSB)

SW0020

Each flag is configured according to the configuration conditions of a flag for each applied
instruction. However, when the conditions listed below hold, the flags specified below are
configured in common with all applied instructions.

Error flags When the number of parameters of applied instructions used differs

When the CPU is memory-protected, and when the address and PI/O
specified by result (R) indicate the inside of the protect area
When a specified PI/O is defective (such as when it is unserviceable)

Overflow flags When an operation result exceeds the range (word or long) specified by

result (R). The operation result specifies the limit value of each size.
Word length: Positive overflow/H7FFF

 Negative overflow/H8000
In regard to word length, bit-type PI/O can be specified for only the LSB.
If it is specified for a bit other than the LSB, no overflow flag will be set.

Long length: Positive overflow/H7FFFFFFF

 Negative overflow/H80000000

5. APPLIED INSTRUCTIONS

5-5

5.6 Function Description
This section specifies the applied instructions. Here is the way they will be described.

ADD Addition

Function
description

This function calculates the sum of the source and destination and stores it
in the result.

Parameter
and
operation

ADD S, D, R

S: Source
D: Destination
R: Result

S+D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use ADD FW000, FW001, FW002

FW000 0001
FW001 00FF
FW002 0100

ADD H1234, [GW000], FW100

H1234 GW000 0010
 GW001 0011

FW100 7FFF The V flag becomes turned on.

Effective
parameter

△ is an
address.
Parameter
error if the
number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct
word
length

  
 Direct

word
length

  

Direct
long
length

  
 Direct

long
length

  

Indirect
word
length

 △ △
 Indirect

word
length

 △ △

Indirect
long
length

 △ △
 Indirect

long
length

 △ △

+

Name of applied
instruction

Function name

Schematizes the
operation.

Shows the array of
parameters.

Shows how it is
typically used.

Effective specification Effective conditional specification Unspecifiable

Target parameter types (source,
destination, and result)

+

Shows the flag to be
changed after the
instruction.

Provides cautions.

Outlines how the
applied instruction
is operated.

The S (source), D
(destination), and R
(result) show the
parameter types that can
be effectively specified.

5. APPLIED INSTRUCTIONS

5-6

ADD Addition

Function
description

This function calculates the sum of the source and destination and stores it in the result.

Parameter and
operation ADD S, D, R

S: Source
D: Destination
R: Result

S+D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
ADD FW000, FW001, FW002

FW000 0001

FW001 00FF

FW002 0100

ADD H1234, [GW000], FW100

H1234 GW000 0010

 GW010 0011

FW100 7FFF The V flag becomes turned on.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

+

+

5. APPLIED INSTRUCTIONS

5-7

SUB Subtraction

Function
description

This function subtracts the contents of the destination from the source and stores it in the result.

Parameter and
operation SUB S, D, R

S: Source
D: Destination
R: Result

S-D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
SUB FW000, FW001, FW002

FW000 0100

FW001 00FF

FW002 0001

SUB H1234, [GW000], FW100

H1234 GW000 0010

 GW010 0011

FW100 8000 The V flag becomes turned on.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

-

-

5. APPLIED INSTRUCTIONS

5-8

INC +1 (Increment)

Function
description

This function adds 1 to the contents of the source.

Parameter and
operation INC S

S: Source

S+1  S

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
INC FW000

FW000

INC [GW000]

GW000

GW010

The system will increment GW000 and GW001,
regarding them as long variables.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  

Direct long
length

  

Indirect word
length

 △ △

Indirect long
length

 △ △

+1

+1

5. APPLIED INSTRUCTIONS

5-9

DEC -1 (decrement)

Function
description

This function subtracts 1 from the contents of the source.

Parameter and
operation DEC S

S: Source

S-1  S

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
DEC FW000

FW000

DEC [GW000]

GW000

GW010

The system will decrement GW000 and GW001,
regarding them as long variables.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  

Direct long
length

  

Indirect word
length

 △ △

Indirect long
length

 △ △

-1

-1

5. APPLIED INSTRUCTIONS

5-10

MUL Multiplication

Function
description

This function multiplies the contents of the source and destination and stores them in the result.

Parameter and
operation MUL S, D, R

S: Source
D: Destination
R: Result

S×D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
MUL FW000, FW001, FW002

FW000 0100

FW001 00FF

FW002 FF00

MUL H22, [GW000], FW100

H0022 GW000 0010

 GW010 0011

FW100 7FFF The V flag becomes turned on.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

×

×

5. APPLIED INSTRUCTIONS

5-11

DIV Division

Function
description

This function divides the source by the contents of the destination and stores the quotient in the
result.

Parameter and
operation DIV S, D, R

S: Source
D: Destination
R: Result

SD  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark When D = 0, the system will turn on the E flag and do nothing.

Typical use
DIV FW000, FW001, FW002

FW000 0100

FW001 0010

FW002 0010

DIV H22, [GW000], FW100

H0022 GW000 0000

 GW010 0011

FW100 0002

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △





5. APPLIED INSTRUCTIONS

5-12

MOD Remainder

Function
description

This function divides the source by the contents of the destination and stores the remainder in the
result.

Parameter and
operation MOD S, D, R

S: Source
D: Destination
R: Result

Remainder of SD  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark When D = 0, the system will turn on the E flag and do nothing. R = 0 when overflowed.

Typical use
MOD FW000, FW001, FW002

FW000 0100

FW001 0012

FW002 0004

MOD H22, [GW000], FW100

H0022 GW000 0000

 GW010 0012

FW100 0010

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △





5. APPLIED INSTRUCTIONS

5-13

SCL Scale conversion

Function
description

This function converts the scale of the source by the contents of the destination and stores it in the
result.

Parameter and
operation SCL S, D1, D2, R

S: Source
D1: Destination 1 D2: Destination 2
R: Result

S×D1D2  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark When a multiplication overflow occurs, the system will write the overflow value in the result and
terminate the writing. When D2 = 0, the system will turn on the E flag and do nothing. R = 0 when
overflowed.

Typical use
SCL FW000, FW001, FW002, FW003

FW000 3320

FW001 0010

FW002 0066

FW003 0805

SCL GW000, GW001, H1110, FW100

GW000 2222

GW010 0012 H1110

FW100 0024

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D1, D2
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

/2222×/12/1110

/3320×/10/66

5. APPLIED INSTRUCTIONS

5-14

AND Logical product

Function
description

This function stores in the result the logical product of the source and the contents of the
destination.

Parameter and
operation AND S, D, R

S: Source
D: Destination
R: Result

S && D  R

Flag
configuration

The E will change. The others will become turned off.

Remark When the R is word length, the system will write a lower-level word of the operation result.

Typical use
AND FW000, FW001, FW002

FW000 0001

FW001 00FF

FW002 0001

AND H1234, [GW000], FW100

H1234 GW000 0010

 GW010 0011

FW100 0010

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

&&

&&

5. APPLIED INSTRUCTIONS

5-15

OR Logical sum

Function
description

This function stores in the result the logical addition of the source and the contents of the
destination.

Parameter and
operation OR S, D, R

S: Source
D: Destination
R: Result

S || D  R

Flag
configuration

The E will change. The others will become turned off.

Remark When the R is word length, the system will write a lower-level word of the operation result.

Typical use
OR FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 5335

OR H1234, [GW000], FW100

H1234 GW000 0010

 GW010 0011

FW100 1235

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

||

||

5. APPLIED INSTRUCTIONS

5-16

EOR Exclusive OR

Function
description

This function stores in the result the exclusive OR of the source and the contents of the destination.

Parameter and
operation EOR S, D, R

S: Source
D: Destination
R: Result

S ^^ D  R

Flag
configuration

The E will change. The others will become turned off.

Remark When the R is word length, the system will write a lower-level word of the operation result.

Typical use
EOR FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 5115

EOR H1234, [GW000], FW100

H1234 GW000 0010

 GW010 0011

FW100 1225

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

^^

^^

5. APPLIED INSTRUCTIONS

5-17

NOT Negation

Function
description

This function stores in the result the negation (bit reversion) of the contents of the source.

Parameter and
operation

NOT S, R

S: Source
D: Destination

S (bit reversion)  R

Flag
configuration

The E will change. The others will become turned off.

Remark

Typical use
NOT FW000, FW002

NOT [GW000], FW100

GW000 0010

GW010 0011

GW100 FFEE

FW000 4321

FW002 BCDE

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

NOT

NOT

5. APPLIED INSTRUCTIONS

5-18

EQU Compare to see if equal

Function
description

This function compares the source with the contents of the destination. If they are equal, this
function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation EQU S, D, R

S: Source
D: Destination
R: Result

S = D 1  R
S  D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
EQU FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0000

EQU HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0000 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-19

NEQ Compare to see if unequal

Function
description

This function compares the source with the contents of the destination. If they are equal, this
function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation NEQ S, D, R

S: Source
D: Destination
R: Result

S  D 1  R
S = D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
NEQ FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0001

NEQ HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0001 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-20

GT Compare to see if larger

Function
description

This function compares the source with the contents of the destination. If the source is larger, this
function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation GT S, D, R

S: Source
D: Destination
R: Result

S > D 1  R
S  D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
GT FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0001

GT HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0000 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-21

GE Compare to see if equal or larger

Function
description

This function compares the source with the contents of the destination. If the source is equal or
larger, this function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation

GE S, D, R

S: Source
D: Destination
R: Result

S  D 1  R
S < D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
GE FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0001

GE HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0000 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-22

LT Compare to see if smaller

Function
description

This function compares the source with the contents of the destination. If the source is smaller, this
function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation LT S, D, R

S: Source
D: Destination
R: Result

S < D 1  R
S  D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
LT FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0000

LT HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0001 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-23

LE Compare to see if equal or smaller

Function
description

This function compares the source with the contents of the destination. If the source is equal or
smaller, this function stores a 1 in the result. If not, it stores a 0.

Parameter and
operation

LE S, D, R

S: Source
D: Destination
R: Result

S  D 1  R
S > D 0  R

Flag
configuration

The E will change. The others will become turned off.

Remark Word-length data is code-extended to long length and compared.

Typical use
LE FW000, FW001, FW002

FW000 4321

FW001 1234

FW002 0000

LE HF234, [GW000], FW100

HF234 GW000 0000

 GW010 F234

FW100 0001 HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Compare

Compare

5. APPLIED INSTRUCTIONS

5-24

TST Code test

Function
description

This function tests the contents of the source and configures the flags P, Z, and N.

Parameter and
operation TST S

S: Source

S > 0: P=1, Z=0, N=0
S = 0: P=0, Z=1, N=0
S < 0: P=0, Z=0, N=1

Flag
configuration

The E, P, Z and N will change. The others will become turned off.

Remark Word-length data is code-extended to long length and tested.

Typical use
TST FW000

FW000 4321

SW0020 2000

TST [GW000]

GW000 FFFF

GW010 F234

SW0020 1000

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  

Direct long
length

  

Indirect word
length

 △ △

Indirect long
length

 △ △

Test

Test

5. APPLIED INSTRUCTIONS

5-25

MOV Transfer

Function
description

This function transfers the contents of the source to the destination.

Parameter and
operation MOV S, D

S: Source
D: Destination

S  D

Flag
configuration

The E will change. The others will become turned off.

Remark If sizes differ in transfer, the system will convert the type.

Typical use
MOV FW000, FW002

FW000 4321

FW002 4321

MOV HF234, @ [H400A00]

HF234 H400A00 FFFF

 2 F234

HF234 is an HFFFFF234.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

D
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

5. APPLIED INSTRUCTIONS

5-26

MOM Collective transfer

Function
description

This function transfers the contents of the source to the destination by sending n elements worth
(word and long) collectively.

Parameter and
operation MOM S, n, D

S: Source
D: Destination
n: Number of elements to be transferred

S1  D1

Sn  Dn

Flag
configuration

The E and V will change. The others will become turned off.

Remark The system will conduct no operation when n ≤ 0 and n > 256. If S is a constant, the system will
convert the constant to D type and configure it as such. If S and D are different in type, the system
will convert their types and configure them as such.

Typical use
MOM FW000, 1, FW002

FW000 4321

FW002 4321

MOM FW000, 2, @ [H400A00]

FW000 F234 H400A00 FFFF

FW001 0001 2 F234

FW002 0000 4 0000

FW003 FFFF 6 0001

HF234 is an HFFFFF234, H0001 is an H00000001.

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

D
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

5. APPLIED INSTRUCTIONS

5-27

EXC Replacement

Function
description

This function replaces the contents of the source with the destination.

Parameter and
operation EXC S, D

S: Source
D: Destination

S  D

Flag
configuration

The E and V will change. The others will become turned off.

Remark If sizes differ in transfer, the system will convert their types and replace them.

Typical use
EXC FW000, FW002

FW000 1234

FW002 4321

EXC @H400B00, @ [H400A00]

H400B00 F234 H400A00 0010

 2 0001

After replacement
H400B00 7FFF H400A00 FFFF

 2 F234

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  

Direct long
length

  

Indirect word
length

 △ △

Indirect long
length

 △ △

5. APPLIED INSTRUCTIONS

5-28

PSH FIFO write

Function
description

This function pushes the contents of the source to the FIFO table. The data length of the FIFO table
is word only.

Parameter and
operation PSH S, TB

S: Source
TB: Starting address of the FIFO table

Flag
configuration

The E and V will change. The others will
become turned off.

Remark The system will perform no operation
when n ≤ 0 and n > 256. It will
perform no operation when the pointer
< 0 or the data size < pointer. When
the pointer = data size, the system will
turn on the FULL flag and perform no
operation. After the push, and when
the system increments the pointer and
it becomes n, the FULL flag will be
turned on.
If not, the 0 flag will be turned off, while the FULL flag will be turned off. If the TB is a constant,
the system will regard it as a table address.

Typical use
PSH FW000, DW000

FW000 1234

DW000

DW005

DW006 Pointer

DW007 Data 1

DW008 Data 2

DW009 Data 3

DW00A 1234

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

TB
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  △

Direct long
length

  
 Direct long

length
  △

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

 FIFO table
 Data #1 n (data size)

Pointer Data #2 For future use
 ZERO flag
 address
 FULL flag
 address
 Push data Pointer
 Data #1

 Data #n

Data storage area
specified by data size

PSH

5. APPLIED INSTRUCTIONS

5-29

POP FIFO read

Function
description

This function pops the FIFO table and stores pop data in the destination. The data length of the
FIFO table is word only.

Parameter and
operation POP TB, D

D: Destination
TB: Starting address of the FIFO table

Flag
configuration

The E will change. The others will
become turned off.

Remark The system will perform no operation
when n ≤ 0 and n > 256. The system
will perform no operation when the
pointer < 0 or the data size < pointer.
When the pointer = 0, the system will
turn on the 0 flag and perform no
operation. After the pop, and when the
system decrements the pointer and
it becomes 0, the 0 flag will be turned on. If not, the 0 flag will be turned off, while the FULL flag
will be turned off. If the TB is a constant, the system will regard it as a table address.

Typical use
POP DW000, FW000

FW000 1234

DW000

DW005

DW006 Pointer

DW007 1234

DW008 Data 2

DW009 Data 3

DW00A Data 4

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

TB
Bit-
type
PI/O

Word-
type
PI/O

Constant

D
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  △
 Direct word

length
  

Direct long
length

  △
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

 FIFO table
 Pop data n (data size)
 For future use
 ZERO flag
 Data #1 address
 Data #2 FULL flag
 Data #3 address

Pointer Data #4 Pointer
 Data #1

 Data #n

Data storage area
specified by data size

POP

5. APPLIED INSTRUCTIONS

5-30

AST Address set

Function
description

This function transfers the address data of the source to the destination. The PI/O alone is effective.

Parameter and
operation AST S, D

S: Source
D: Destination

Address of S  D

Flag
configuration

The E will change. The others will become turned off.

Remark

Typical use
AST FW000, [FW002]

FW000

FW002 0040

FW003 2000

AST X0000, @ [H400A00]

Address H400A00 0070

of X0000 2 0000

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

D
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

  
 Indirect word

length
  

Indirect long
length

  
 Indirect long

length
 △ △

Address

5. APPLIED INSTRUCTIONS

5-31

SCH Search

Function
description

This function searches the range of a specified distance (in meters) from the destination for the
contents of the source and stores in the result the number (n) of steps from the destination.

Parameter and
operation SCH S, D, m, R

S: Source
D: Destination
m: Number of search steps
R: Result

Flag
configuration

The E will change. The others will
become turned off.

Remark The system will perform no
operation when m ≤ 0 and m > 256.
The matching data is the first thing
found. If the search range contains no matching data, the result will be set to -1. If the search data
type (long or word) differs, an error will occur. The n begins with 0.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
SCH DW000, FW000, 5, FW005

DW000 1234

FW000 0000

FW001 1234 First

FW002 0000

FW003 1234

FW004 0000

FW005 0001

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, m
Bit-
type
PI/O

Word-
type
PI/O

Constant

D, R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

S R

Data n
Search table

D (0)
(1)

 Search range

(n) Data

(m-1)

Search

5. APPLIED INSTRUCTIONS

5-32

BTD Binary  BCD conversion

Function
description

This function converts the contents of the source from binary to BCD and stores them in the result.

Parameter and
operation BTD S, R

S: Source
R: Result

S (binary)  R (BCD)

Flag
configuration

The E and V will change. The others will become turned off.

Remark When S < 0, the E flag will be turned on and the V flag will be turned off. The system will perform
no operation. When overflowed, the system sets it to H9999 or H99999999.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
BTD FW000, FW002

FW000 007B

FW002 0123

BTD HBC614E, @ [H400A00]

HBC614E H400A00 1234

 2 5678

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

BTD

BTD

5. APPLIED INSTRUCTIONS

5-33

DTB BCD  binary conversion

Function
description

This function converts the contents of the source from BCD to binary and stores them in the result.

Parameter and
operation DTB S, R

S: Source
R: Result

S (BCD)  R (binary)

Flag
configuration

The E and V will change. The others will become turned off.

Remark When anything between A and F is used in S, the E flag will be turned on and the system will
perform no operation.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
DTB FW000, FW002

FW000 1234

FW002 04D2

DTB [H99999999], @ [H400A00]

H99999999 H400A00 05F5

 2 E0FF

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

DTB

DTB

5. APPLIED INSTRUCTIONS

5-34

SEG Binary  7-segment conversion

Function
description

This function converts the contents of the source from binary to 7-segment data and stores them in
the result.

Parameter and
operation SEG S, R

S: Source
R: Result

S (binary)  R (7-segment data)

Flag
configuration

The E will change. The others will become turned off.

Remark The size  2 of the S is written in the R.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
SEG FW000, FW002

FW000 5678

FW002 5B5F

FW003 707F

SEG [HDEF01234], @ [H400A00]

HDEF01234 H400A00 3D4F

 2 477E

 4 306D

 6 7933

[7-segment table]

No. 0 1 2 3 4 5 6 7 8 9 A B C D E F

Data 7E 30 6D 79 33 5B 5F 70 7F 7B 77 1F 4E 3D 4F 47

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

7-segment conversion

7-segment
conversion

5. APPLIED INSTRUCTIONS

5-35

ASP Binary  ASCII conversion pack mode

Function
description

This function converts the contents of the source from binary to ASCII data and stores them in the
result in the pack mode.

Parameter and
operation ASP S, R

S: Source
R: Result

S (binary)  R (ASCII pack)

Flag
configuration

The E will change. The others will become turned off.

Remark The size  2 of the S is written in the R.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ASP FW000, FW002

FW000 5678

FW002 3536

FW003 3738

ASP [HDEF01234], @ [H400A00]

HDEF01234 H400A00 4445

 2 4630

 4 3132

 6 3334

[ASCII, binary table]

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F

ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

ASCII conversion

ASCII
conversion

5. APPLIED INSTRUCTIONS

5-36

ASU Binary  ASCII conversion unpack mode

Function
description

This function converts the contents of the source from binary to ASCII data and stores them in the
result in the unpack mode.

Parameter and
operation ASU S, R

S: Source
R: Result

S (binary)  R (ASCII unpack)

Flag
configuration

The E will change. The others will become turned off.

Remark The size  4 of the S will be written in the R.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ASU FW001, FW002

FW001 5678

FW002 3035

FW003 3036

FW004 3037

FW005 3038

ASU [HDEF01234], @ [H400A00]

HDEF01234 H400A00 3044

 2 3045

 4 3046

 6 3030

 8 3031

 A 3032

 C 3033

 E 3034

[ASCII, binary table]

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

ASCII conversion

ASCII
conversion

5. APPLIED INSTRUCTIONS

5-37

APB ASCII  binary conversion pack mode

Function
description

This function converts the contents of the source from ASCII data (pack mode) to binary and stores
them in the result.

Parameter and
operation APB S, R

S: Source
R: Result

S (ASCII pack)  R (binary)

Flag
configuration

The E will change. The others will become turned off.

Remark The size  2 of R will be taken from S and converted. If S contains any data from H30 to 39 or H41
to 46, the E flag will be turned on and the system will perform no operation.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
APB FW000, FW002

FW000 3132

FW001 3334

FW002 1234

APB DW000, @ [H400A00]

DW000 4645 H400A00 FEDC

1 4443 2 9876

2 3938

3 3736

[ASCII, binary table]

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F

ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Binary conversion

Binary
conversion

5. APPLIED INSTRUCTIONS

5-38

AUB ASCII  binary conversion unpack mode

Function
description

This function converts the contents of the source from ASCII data (unpack mode) to binary and
stores them in the result.

Parameter and
operation AUB S, R

S: Source
R: Result

S (ASCII unpack)  R (binary)

Flag
configuration

The E will change. The others will become turned off.

Remark The size  4 of R will be taken from S and converted. If S contains any data from H30 to 39 or H41
to 46, the E flag will be turned on and the system will perform no operation.
If a 16-bit value is specified for S, the eight low-level bits are effective.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
AUB FW001, FW005

FW001 3035

FW002 3036

FW003 3037

FW004 3038

FW005 5678

AUB [DW000], @ [H400A00]

DW000 1130 H400A00 0123

 1131 2 4567

 0032

 2233

 3334

 4435

 5536

 FF37

[ASCII, binary table]

Binary 0 1 2 3 4 5 6 7 8 9 A B C D E F
ASCII 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45 46

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Binary conversion

Binary
conversion

5. APPLIED INSTRUCTIONS

5-39

ABS Absolute value

Function
description

This function stores the absolute values in the source in the result.

Parameter and
operation ABS S, R

S: Source
R: Result

|S|  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark When overflowed, the system will set the result to H7FFFFFFF.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ABS FW000, FW002

FW000 FF9C

FW002 0064

ABS DW000, @ [H400A00]

DW000 FFFB

H400A00 0000

2 0005

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

Absolute value

Absolute value

5. APPLIED INSTRUCTIONS

5-40

NEG Code conversion

Function
description

This function converts the code in the source and stores it in the result.

Parameter and
operation NEG S, R

S: Source
R: Result

-S  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark When overflowed, the system will set the result to H7FFF and H7FFFFFFF.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
NEG FW000, FW002

FW000 1000

FW002 F000

NEG DW000, @ [H400A00]

DW000 1234

H400A00 FFFF

2 EDCC

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

NEG

NEG

5. APPLIED INSTRUCTIONS

5-41

DCD Decode

Function
description

This function decodes the contents of the source and stores the finding in the result.

Parameter and
operation DCD S, R

S: Source
R: Result

S n 

 0 n (LSB)

R 0 ~ 0 1 0 ~ 0

With n specified in S, the system will turn on the bit of the bit
number n as counted from the MSB of R (counted from 0
onwards).

Flag
configuration

The E will change. The others will become turned off.

Remark The effective bit of S will be four low-level bits when R is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
DCD FW000, FW002

FW000 0003

FW002 1000

DCD [DW000], @ [H400A00]

DW000 0000

DW001 001F

H400A00 0000

2 0001

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

DCD

DCD

5. APPLIED INSTRUCTIONS

5-42

ECD Encode

Function
description

This function encodes the contents of the source and stores the finding in the result.

Parameter and
operation ECD S, R

S: Source
R: Result

 0 n (LSB)

S 0 ~ 0 1 ? ~ ?

  R n

The system will count the items, starting from the MSB of S
(counting it from 0 onwards) and stores in R the n where the
first 1 is detected.

Flag
configuration

The E will change. The others will become turned off.

Remark The system will perform no operation when S = 0. The bit to be encoded will only be effective for
the bit where the first 1 is detected by the MSB.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ECD FW000, FW002

FW000 0456

FW002 0005

ECD [DW000], @ [H400A00]

DW000 0000

DW001 0080

H400A00 0000

2 0018

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

ECD

ECD

5. APPLIED INSTRUCTIONS

5-43

LSR Logic right-shift

Function
description

This function right-shifts the contents of the source with the contents of the destination and stores
the finding in the result.

Parameter and
operation LSR S, D, R

S: Source
R: Result
D: Destination

0 RS-D (LSB)
S

0 (LSB)

R 0 ~ 0

Flag
configuration

The E will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
LSR FW000, FW001, FW002

FW000 0456

FW001 0004

FW002 0045

LSR [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 21D9

2 50C8

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

RS will depend
on whether it is
word or long.

(15/31)

LSR

LSR

5. APPLIED INSTRUCTIONS

5-44

LSL Logic left-shift

Function
description

This function left-shifts the contents of the source with the contents of the destination and stores the
finding in the result.

Parameter and
operation LSL S, D, R

S: Source
R: Result
D: Destination

0 D (LSB)
S

0 (LSB)

R 0~0

Flag
configuration

The E will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
LSL FW000, FW001, FW002

FW000 0456

FW001 0004

FW002 4560

LSL [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 1D95

2 0C84

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

LSB will depend
on whether it is
word or long.

(15/31)

LSL

LSL

5. APPLIED INSTRUCTIONS

5-45

ASR Arithmetic right-shift

Function
description

This function right-shifts (holds the code bit) the contents of the source with the contents of the
destination and stores the finding in the result.

Parameter and
operation ASR S, D, R

S: Source
R: Result
D: Destination

0 RS-D (LSB)
S

0 (LSB)

R 0 ~ 0

Flag
configuration

The E and V will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ASR FW000, FW001, FW002

FW000 8456

FW001 0004

FW002 F845

ASR [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 E1D9

2 0246

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

RS will depend
on whether it is
word or long.

(15/31)

ASR

ASR

5. APPLIED INSTRUCTIONS

5-46

ASL Arithmetic left-shift

Function
description

This function left-shifts the contents of the source with the contents of the destination and stores the
finding in the result. When overflowed, the system will set it to full scale.

Parameter and
operation ASL S, D, R

S: Source
R: Result
D: Destination

0 D (LSB)
S

0 (LSB)

R 0~0

Flag
configuration

The E and V will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ASL FW000, FW001, FW002

FW000 0456

FW001 0004

FW002 4560

ASL [DW000], 2, @ [H400A00]

DW000 4765 2

DW001 4321

H400A00 7FFF

2 FFFF

 Overflowed (V flag ON)

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

LSB will
depend on
whether it is
word or long.

(15/31)

ASL

ASL

5. APPLIED INSTRUCTIONS

5-47

ROR CW rotation

Function
description

This function rotates the contents of the source clockwise with the contents of the destination and
stores the finding in the result.

Parameter and
operation ROR S, D, R

S: Source
R: Result
D: Destination

0 RS-D (LSB)
S

Flag
configuration

The E will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ROR FW000, FW001, FW002

FW000 8456

FW001 0004

FW002 6845

ROR [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 61D9

2 50C8

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

RS will depend
on whether it is
word or long.

(15/31)

ROR

ROR

5. APPLIED INSTRUCTIONS

5-48

ROL CCW rotation

Function
description

This function rotates the contents of the source counterclockwise with the contents of the
destination and stores the finding in the result.

Parameter and
operation ROL S, D, R

S: Source
R: Result
D: Destination

0 D (LSB)
S

Flag
configuration

The E will change. The others will become turned off.

Remark The effective bit of D will be four low-level bits when S is word length and five low-level bits
when it is long length.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ROL FW000, FW001, FW002

FW000 8456

FW001 0004

FW002 4568

ROL [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 1D95

2 0C86

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

RS will depend
on whether it is
word or long.

(15/31)

ROL

ROL

5. APPLIED INSTRUCTIONS

5-49

LIM Limiter

Function
description

This function compares the contents of the source with the contents of the boundary values
(destinations D1 and D2) and stores the finding in the result.

Parameter and
operation LIM S, D1, D2, R

S: Source
R: Result
D1, D2: Destination

Flag
configuration

The E and V will change. The others will become turned off.

Remark When D1 < D2, the E flag will be turned on.

Typical use
LIM FW000, FW001, FW002, FW003

FW000 0023

FW001 0010

FW002 FFF0

FW003 0010

LIM [DW000], 2, -1, @ [H400A00]

DW000 FFFF 2

DW001 FFFF -1

H400A00 FFFF

2 FFFF

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D1, D2
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

(S)

(R)

D2
D1

D1
D2

LIM

LIM

5. APPLIED INSTRUCTIONS

5-50

BND Dead band

Function
description

This function compares the contents of the source with the contents of the boundary values
(destinations D1 and D2) and stores them in the result, regarding the boundary range as a dead band
(data 0).

Parameter and
operation BND S, D1, D2, R

S: Source
R: Result
D1, D2: Destination

Flag
configuration

The E and V will change. The others will become turned off.

Remark When D1 < D2, the E flag will be turned on.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
BND FW000, FW001, FW002, FW003

FW000 0023

FW001 0010

FW002 FFF0

FW003 0013

BND [DW000], 2, -1, @ [H400A00]

DW000 FFFF 2

DW001 FFFF -1

H400A00 0000

2 0000

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D1, D2
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

BND

BND

(S)

(R)

D2
D1

Identical gradients

5. APPLIED INSTRUCTIONS

5-51

ZON Dead zone

Function
description

This function adds a bias (destinations D1 and D2) to the contents of the source depending on
whether it is positive or negative and stores the finding in the result.

Parameter and
operation ZON S, D1, D2, R

S: Source
R: Result
D1, D2: Destination

Flag
configuration

The E and V will change. The others will become turned off.

Remark When D1 < D2, the E flag will be turned on.
Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ZON FW000, FW001, FW002, FW003

FW000 0023

FW001 0010

FW002 FFF0

FW003 0033

ZON [DW000], 2, -1, @ [H400A00]

DW000 FFFF 2

DW001 FFFF -1

H400A00 FFFF

2 FFFF

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D1, D2
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

ZON

ZON

(S)

(R)

D2

D1

Identical gradients

5. APPLIED INSTRUCTIONS

5-52

ROT Square root

Function
description

This function stores the square root (the integer portion only) of the contents of the source in the
result.

Parameter and
operation ROT S,R

S: Source
R: Result

When S ≥ 0, Square root of S  R
When S < 0 0  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark Do not specify bit-type PI/O for R because the result will not be set correctly.

Typical use
ROT FW000, FW002

FW000 0456

FW002 0021

ROT [DW000], @ [H400A00]

DW000 0000

DW001 0080

H400A00 0000

2 000B

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

ROT

ROT

5. APPLIED INSTRUCTIONS

5-53

MAX Maximum value

Function
description

This function compares the contents of the source with those of the destination in size and stores
the larger value in the result.

Parameter and
operation MAX S, D, R

S: Source
R: Result
D: Destination

When S ≥ D, S  R
When S < D D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
MAX FW000, FW001, FW002

FW000 0456

FW001 0004

FW002 0456

MAX [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 0000

2 0002

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

MAX

MAX

5. APPLIED INSTRUCTIONS

5-54

MIN Minimum value

Function
description

This function compares the contents of the source with those of the destination in size and stores
the smaller value in the result.

Parameter and
operation MIN S, D, R

S: Source
R: Result
D: Destination

When S ≤ D, S  R
When S > D D  R

Flag
configuration

The E and V will change. The others will become turned off.

Remark

Typical use
MIN FW000, FW001, FW002

FW000 0456

FW001 0004

FW002 0004

MIN [DW000], 2, @ [H400A00]

DW000 8765 2

DW001 4321

H400A00 8765

2 4321

Effective
parameter

△ is an
address.
Parameter error
if the number is
odd.

S, D
Bit-
type
PI/O

Word-
type
PI/O

Constant

R
Bit-
type
PI/O

Word-
type
PI/O

Constant

Direct word
length

  
 Direct word

length
  

Direct long
length

  
 Direct long

length
  

Indirect word
length

 △ △
 Indirect word

length
 △ △

Indirect long
length

 △ △
 Indirect long

length
 △ △

MIN

MIN

5. APPLIED INSTRUCTIONS

5-55

CLR Clear

Function
description

This function clears the specified I/O area. The TCLR, UCLR, and CCLR will clear the discrete
value area as well.

Parameter and
operation Name S

Name: Name of each CLR instruction
S: Source (Unused. Specify 0.)

Flag
configuration

The system will turn off all flags.

Remark

Description

Name Function

XCLR Clears X0000 through XFFFF.

YCLR Clears Y0000 through YFFFF.

GCLR Clears G000 through GFFF.

RCLR Clears R000 through RFFF.

KCLR Clears K000 through KFFF.

TCLR Clears T000 through T3FF.
Clears the measurement of T.

UCLR Clears U000 through U3FF.
Clears the measurement of U.

CCLR Clears C000 through C3FF.
Clears the measurement of C.

VCLR Clears V000 through VFFF.

ECLR Clears E0000 through EFFFF.

FCLR Clears S0020 through S002F.

JCLR Clears J000 through JFFF.

QCLR Clears Q0000 through QFFFF.

HHCLR Clears HH000 through HH1FF.

Typical use
XCLR 0

HHCLR 0

This Page Intentionally Left Blank

SUPPLEMENT A FLOW OF THE HI-FLOW PROGRAM

Z-1

SUPPLEMENT A FLOW OF THE HI-FLOW PROGRAM

A HI-FLOW program is created with a programming tool and executed by the PCs. When
monitoring an execution result or similar, the system receives a necessary minimum amount of data
from the PCs, synthesizes it with a program included in the tool, and outputs it. The aim is to
minimize traffic in order to increase monitoring speed.
The system also gives and receives data with different media (HD) to save and load created
programs.

Media
(HD)

Programming tool

User

HI-FLOW program

Save

Load

Input

PCs

Monitored

+

Execute

HI-FLOW program

Send Receive

SUPPLEMENT B PCs MEMORY

Z-2

SUPPLEMENT B PCs MEMORY

HI-FLOW programs executed on the PCs exist in the areas specified below in the CPU module.
They are actually arranged in memory on the PCs. Here is an image of the memory map.

Fixed The process areas can be specified in the
optional areas in the following standard
areas with the system edition command.
Standard: 0x7C080000 to 0x7C800000

0x7C000000 0x7C040600 0x7C080000
 HI-FLOW System Process index

table
System
table

Process
n

Process
n-3

Process
n+2

 Process
n-7

The processes are not necessarily in ascending order.

Communication
data

Program area top Reverse translation
information

management table
Program area end

Programmable area end

Object program

Process 0 top

Process 0 end

Process 1 top

Process 1 end

Execution table

Process 255 top

Process 255 end

SUPPLEMENT C ONLINE MODE

Z-3

SUPPLEMENT C ONLINE MODE

“Offline” means the mode in which an object to be edited is turned into a program as part of the
programming tool regardless of the contents of the PCs memory.
“Online” means the mode in which an object to be edited or put into memory is turned into a PCs
program. However, when the object is turned into a PCs program, the tool-side program and the
PCs program need to correspond as not all data needed for monitoring is read from the PCs (it takes
time to communicate). One method of making them match is by sending and receiving.
Alternatively, the HI-FLOW program is completed in the process, so that the process can be edited
and monitored if a single process makes a match. All processes/one process are communicated
partly to save time.

(1) Sending all processes

Here is the flow of data when all HI-FLOW programs existing on the tool are sent to the PCs.

Programming tool

Source
program

PRCS000

PRCS255

[1]
All programs
translated

Object
program

PREO000

PREO255

Table

EXTD000
EXTD001
EXTD002

EXTDXXX

[2]
Instruction to delete
all processes

[3]
Sending objects to all
processes in ascending
order

[4]
Sending other
tables

PCs

P
ro

ce
ss

 0

P
ro

ce
ss

 1

P
ro

ce
ss

 2
55

After all processes are sent, the processes and tables on memory will take ascending order.

SUPPLEMENT C ONLINE MODE

Z-4

(2) Receiving all processes
Here is the flow of data when all HI-FLOW programs existing on the PCs are sent to the tool.

PCs

P
ro

ce
ss

?

P
ro

ce
ss

?

P
ro

ce
ss

?

There is no guarantee that processes and tables on memory will be saved in ascending
order when received.

Programming tool

Source
program

PRCS000

PRCS255

[1] All processes and table deleted

Object
program

PREO000

PREO255

Table

EXTD000
EXTD001
EXTD002

EXTDXXX
[4]
Reverse
translation

[2]
Sending objects to all
processes in ascending
order

[3]
Sending other
tables

SUPPLEMENT C ONLINE MODE

Z-5

(3) Sending one process
Here is the flow of data when a single particular HI-FLOW program existing on the tool is sent
to the PCs.

Programming tool

Source
program

PRCS???

[1]
One process
translated

Object
program

PREO???

Table

EXTD000
EXTD001
EXTD002

EXTDXXX

[2]
Instruction to delete
a specified process

[3]
Sending an object
of a specified
process

[4]
Receiving other
tables from the
PCs

PCs

P
ro

ce
ss

?

P
ro

ce
ss

?

P
ro

ce
ss

??
?

After the sending, the specified process comes to the last on memory.

SUPPLEMENT C ONLINE MODE

Z-6

(4) Receiving one process
Here is the flow of data when a single HI-FLOW process existing on the PCs is received by the
tool.

Programming tool

Source
program

PRCS???

Object
program

PREO???

Table

EXTD000
EXTD001
EXTD002

EXTDXXX

[3]
Reverse
translation

[1]
Receiving an object of
a specified process

[2]
Receiving other
tables from the
PCs

PCs

P
ro

ce
ss

?

P
ro

ce
ss

??
?

P
ro

ce
ss

?

There is no guarantee that the processes and tables on memory will be waved in
ascending order when received.

SUPPLEMENT D PROGRESS CHECK

Z-7

SUPPLEMENT D PROGRESS CHECK

HI-FLOW indicates the progress position of an item on a user program with a monitor cursor.
HI-FLOW systems on the PCs manage the progress position of an item at the present.
This supplement shows how a user program transferred to the PCs is checked for progress on the
PCs.

Item Description
Basic rules The system will check the progress for each scan interval for the PCs. ACT-

started processes will be checked in progress in ascending order of process
number. The system will check the progress in ascending order of route
number in the same process. (The root number increases on the screen as
follows: left top < left bottom < right top < right bottom.) It will progress in
ascending order of step number in the same route. When one step is complete,
the system goes to the next step. If progress is impossible, the system will
check the progress of the route of the next number. In the next scan, a progress
check of this process and route will be conducted with this step first.

Call process Called processes will be checked in progress after the source process and
source route. When a progress check is complete on the called process, and if
the process has not yet been executed, the system will check the progress of the
route after the source process and source route. When it is complete, the system
will check the progress of the step after the source route.

Process control ACT-started processes are checked in progress at the next scan if the process
number is smaller than the ACT-started process whose progress is being
checked at that point in time, and at the same scan if larger.
The RST, STP, and CLR will be processed when both the control box and
process start.

Constant monitoring The conditions (ACT, STP, RST, and CLR) for process start and the multi-
entry conditions will be checked before the particular process is checked in
progress. When the conditions hold, the system will perform the operation
before such a progress check of the process.
The system will check the Y output conditions with an interlock before the first
progress check of the process and turn on and off the Y output.

Branching After executing a branch step (if and jump), the system will check the progress
of the destination step. Therefore, the execution route may not be subjected to a
progress check for one scan, or be checked twice in progress. Note that the
closed loop without progress conditions may be infinitely executed.

Repetition The repeat end then checks the progress of repeat start. Note that repeating
without progress conditions may constitute an infinite execution.

Shutdown The system will execute an escape and check the progress of the next step. In
the case of a call process, the system will check the progress of the step after
the source process and source route.

Synchronization After executing para start, check the progress of the next step. In the case of
para end and route end, the system will check the progress of the step after the
para end of the merging route when all synchronization routes are complete. If
not all are complete, the system will stop its own route and check the progress
of the next route.

SUPPLEMENT D PROGRESS CHECK

Z-8

Item Description
Selection After executing the selection, the system will check the progress of the next

step. When the conditions for cell wait hold, the system will stop other selected
routes and check the progress of the next step. When they do not hold, the
system will check the progress of the next route.
Select end and route end check the progress of the step after the select end of
the merging route. At that time, the system will start if the merging route is
stopped.

Wait for the conditions If the conditions hold, the wait makes the system go to the next step and
conduct a progress check. If the conditions do not hold, the system will check
the progress of the route of the next step. In the next scan, the progress check of
that process and route will be conducted with this step first. If it is with
precondition clear, and if the preceding step is an ON statement before the
system goes to the next step, the system will clear it to 0.

Figure without delay This displays the names of the figures that go to the next step immediately in
any case. The process start, route start, para start, select, multi-entry, box,
control box, function, process end at the end of the call process, route end at the
end of synchronization, para end, route end at selective merging, select end,
and branching relationship (repeat start, repeat end, if, and jump) will go to the
step where they should go, without a scan delay.

Non-synchronous
merging

If a para start is made, then a check must be made to see if the next step is still
in progress.
If a given route other than non-synchronous routes has already reached its route
end at the time the main route reaches its non-synchronous process end, the
process start must be performed in the next scan again. Then, a check must be
made to see if the next step is still in progress. If a given non-synchronous
route is still on the way to its route end at the time the process start is to be
performed again, then the process start need not be performed, but instead a
check must be made to see if the next step is still in progress.

SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD

Z-9

SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD

A HI-FLOW program runs as part of the HP on the CPU module of the PCs. Increasing the number
of HI-FLOW programs therefore increases the HP load on the CPU module of the PCs.
Overloading will stop the sequence cycle or cause any other malfunction in the system in general.
The below explains how to create a HI-FLOW program effectively and shows a guide for load
judgment.

<How to create a HI-FLOW program effectively>

[1] The size of the load of the HI-FLOW program depends on the number of routes being

executed.

Any program that executes all of a large number of incorporated split processes or routes will
have a heavier load. The vertical (route) length of the HI-FLOW program is not significant.

[2] Be on guard against superfluous loops.

Be on guard against loops that are unnecessary and have no stops.

[3] Use timer numbers without skipping any of them in ascending order.

The smaller the timer number, the lighter the load from the timer (wait timer, parallel timer,
and counter).

[4] The wait timer uses the same number in the same route.

Wait timers on the same route are never executed simultaneously. Assign an identical timer
number and avoid using the rear timer number whenever possible.

The program in the chart shown on the left continues
to execute steps in the loop and increases the load
until X0000 is turned off.

B1:ON G000

ACT P4

ON G001

X0000，B1

SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD

Z-10

[5] Minimize the call process.

Creating a program containing subroutines will make it easier to understand. During execution,
however, the load will be heavier than when it is not turned into a call process. When
structuralizing a program, give good consideration.

[6] Avoid using consecutive control boxes.

Avoid the continuous use of the execution load of the control box whenever possible, because
it is considerably heavy. If usage is absolutely necessary to, use a continuous specification of
processes effectively.

[7] Minimize the setting of the system control bit.

The system control bit needs a check for each sequence cycle and for each step execution. It is
then considerably loaded. Set a necessary minimum.

[8] Minimize the use of multi-entry.

The multi-entry step needs a check for each sequence. The larger the number of steps used, the
heavier the load. Minimize their use.

ACT P1-P20 ACT P1

ACT P20

SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD

Z-11

[9] Be on guard against in-loops of multi-entry.

For multi-entry, check the conditional expression for each sequence cycle. If it holds, begin
with that step. However, if the conditions hold consecutively instead of in an edge form, an in-
loop will occur. Set the conditions for multi-entry to edge trigger.

[10] Minimize the use of STP and RST at process start.

STP and RST at process start are considerably loaded in order to check the conditions for
each sequence cycle. Set these to the necessary minimum.

[11] Be on guard against the CLR setting of process start.

CLR of process start is heavily loaded in order to clear the PI/O every time the conditions
hold. (RST, STP, and ACT will not check the conditions once the conditions hold.) Create
check conditions for CLR with care.

[12] Avoid using applied instructions consecutively.

Applied instructions perform operations without stoppage. Describing them consecutively
may therefore extend their sequence cycle. Create them with sufficient care.

[13] Avoid complex conditional expressions whenever possible.

Complex conditional expressions of HI-FLOW take considerable time to analyze compared
with the ladder. Complicated conditions will become lighter in load when handed over to HI-
FLOW after being received by the ladder.

If X0001 does not hold and X0000 remains on in the left-hand
program, the system will continue to execute 1 through 4 for
each sequence. To prevent this, change X0000 to an edge
condition (to execute only when X0000 changes from OFF to
ON).

X0000

ACT P10

ON G000

X0001

1

2

3

4

This Page Intentionally Left Blank

	Cover
	Copyright
	SAFETY PRECAUTIONS
	Revision History
	PREFACE
	CONTENTS
	CHAPTER 1 COMPOSITION OF THE HI-FLOW PROGRAM
	CHAPTER 2 HOW TO USE THIS MANUAL
	2.1 Overview
	2.2 Description of Syntax
	2.3 Description of Applied Instructions

	CHAPTER 3 PROCESS
	3.1 What is a Process?
	3.2 Program
	3.3 Process Information

	CHAPTER 4 DESCRIPTION OF SYNTAX
	4.1 Process Start and Process End
	4.2 Route Start and Route End
	4.3 Wait
	4.4 Boxes
	4.5 Control Box
	4.6 Repeat Start and Repeat End
	4.7 If
	4.8 Jump
	4.9 Escape
	4.10 Para Start and Para End
	4.11 Para Start and Select End
	4.12 Select, Cell Wait, and Select End
	4.13 Multi-entry
	4.14 Call
	4.15 Function
	4.16 Wait with Precondition
	4.17 Non-synchronous Process End

	CHAPTER 5 APPLIED INSTRUCTIONS
	5.1 Overview
	5.2 How to Use It
	5.3 Parameters
	5.4 Type Conversion in Operations
	5.5 System Error Flags
	5.6 Function Description

	SUPPLEMENT A FLOW OF THE HI-FLOW PROGRAM
	SUPPLEMENT B PCs MEMORY
	SUPPLEMENT C ONLINE MODE
	SUPPLEMENT D PROGRESS CHECK
	SUPPLEMENT E HI-FLOW PROGRAM AND CPU LOAD

